
11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 1/67

A re-introduction to JavaScript
(JS tutorial)

Why a re-introduction? Because JavaScript is notorious for
being the world's most misunderstood programming
language. It is often derided as being a toy, but beneath its
layer of deceptive simplicity, powerful language features
await. JavaScript is now used by an incredible number of high-
profile applications, showing that deeper knowledge of this
technology is an important skill for any web or mobile
developer.

It's useful to start with an overview of the language's history.
JavaScript was created in 1995 by Brendan Eich while he was
an engineer at Netscape. JavaScript was first released with
Netscape 2 early in 1996. It was originally going to be called
LiveScript, but it was renamed in an ill-fated marketing
decision that attempted to capitalize on the popularity of Sun
Microsystem's Java language — despite the two having very
little in common. This has been a source of confusion ever
since.

Several months later, Microsoft released JScript with Internet
Explorer 3. It was a mostly-compatible JavaScript work-alike.
Several months after that, Netscape submitted JavaScript to
Ecma International, a European standards organization, which





https://developer.mozilla.org/en-US/docs/Glossary/JavaScript
http://javascript.crockford.com/javascript.html
http://www.ecma-international.org/

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 2/67

resulted in the first edition of the ECMAScript standard that
year. The standard received a significant update as
ECMAScript edition 3 in 1999, and it has stayed pretty much
stable ever since. The fourth edition was abandoned, due to
political differences concerning language complexity. Many
parts of the fourth edition formed the basis for ECMAScript
edition 5, published in December of 2009, and for the 6th
major edition of the standard, published in June of 2015.

Because it is more familiar, we will refer to

ECMAScript as "JavaScript" from this point on.

Unlike most programming languages, the JavaScript language
has no concept of input or output. It is designed to run as a
scripting language in a host environment, and it is up to the
host environment to provide mechanisms for communicating
with the outside world. The most common host environment
is the browser, but JavaScript interpreters can also be found in
a huge list of other places, including Adobe Acrobat, Adobe
Photoshop, SVG images, Yahoo's Widget engine, server-side
environments such as Node.js, NoSQL databases like the
open source Apache CouchDB, embedded computers,
complete desktop environments like GNOME (one of the
most popular GUIs for GNU/Linux operating systems), and
others.

Overview

JavaScript is a multi-paradigm, dynamic language with types
and operators, standard built-in objects, and methods. Its











https://developer.mozilla.org/en-US/docs/Glossary/ECMAScript
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://nodejs.org/
http://couchdb.apache.org/
http://www.gnome.org/

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 3/67

syntax is based on the Java and C languages — many
structures from those languages apply to JavaScript as well.
JavaScript supports object-oriented programming with object
prototypes, instead of classes (see more about prototypical
inheritance and ES2015 classes). JavaScript also supports
functional programming — functions are objects, giving
functions the capacity to hold executable code and be passed
around like any other object.

Let's start off by looking at the building blocks of any
language: the types. JavaScript programs manipulate values,
and those values all belong to a type. JavaScript's types are:

Number

String

Boolean

Function

Object

Symbol (new in ES2015)

... oh, and undefined and null , which are ... slightly odd. And
Array , which is a special kind of object. And Date and
RegExp , which are objects that you get for free. And to be
technically accurate, functions are just a special type of object.
So the type diagram looks more like this:

Number

String

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 4/67

Boolean

Symbol (new in ES2015)

Object

Function

Array

Date

RegExp

null

undefined

And there are some built-in Error types as well. Things are a
lot easier if we stick with the first diagram, however, so we'll
discuss the types listed there for now.

Numbers

Numbers in JavaScript are "double-precision 64-bit format
IEEE 754 values", according to the spec. This has some
interesting consequences. There's no such thing as an integer
in JavaScript, so you have to be a little careful with your
arithmetic if you're used to math in C or Java.

Also, watch out for stuff like:

0.1 + 0.2 == 0.30000000000000004;1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 5/67

In practice, integer values are treated as 32-bit ints, and some
implementations even store it that way until they are asked to
perform an instruction that's valid on a Number but not on a
32-bit integer. This can be important for bit-wise operations.

The standard arithmetic operators are supported, including
addition, subtraction, modulus (or remainder) arithmetic, and
so forth. There's also a built-in object that we forgot to
mention earlier called Math that provides advanced
mathematical functions and constants:

You can convert a string to an integer using the built-in
parseInt() function. This takes the base for the conversion
as an optional second argument, which you should always
provide:

In older browsers, strings beginning with a "0" are assumed to
be in octal (radix 8), but this hasn't been the case since 2013
or so. Unless you're certain of your string format, you can get
surprising results on those older browsers:

Math.sin(3.5);
var circumference = 2 * Math.PI * r;

1
2

parseInt('123', 10); // 123
parseInt('010', 10); // 10

1
2

parseInt('010'); // 8 1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators#Arithmetic_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 6/67

Here, we see the parseInt() function treat the first string as
octal due to the leading 0, and the second string as
hexadecimal due to the leading "0x". The hexadecimal notation
is still in place; only octal has been removed.

If you want to convert a binary number to an integer, just
change the base:

Similarly, you can parse floating point numbers using the
built-in parseFloat() function. Unlike its parseInt() cousin,
parseFloat() always uses base 10.

You can also use the unary + operator to convert values to
numbers:

A special value called NaN (short for "Not a Number") is
returned if the string is non-numeric:

parseInt('0x10'); // 162

parseInt('11', 2); // 31

+ '42'; // 42
+ '010'; // 10
+ '0x10'; // 16

1
2
3

parseInt('hello', 10); // NaN1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 7/67

NaN is toxic: if you provide it as an input to any mathematical
operation the result will also be NaN :

You can test for NaN using the built-in isNaN() function:

JavaScript also has the special values Infinity and -
Infinity :

You can test for Infinity , -Infinity and NaN values using
the built-in isFinite() function:

The parseInt() and parseFloat() functions parse a

string until they reach a character that isn't valid for

NaN + 5; // NaN1

isNaN(NaN); // true1

1 / 0; // Infinity
-1 / 0; // -Infinity

1
2

isFinite(1 / 0); // false
isFinite(-Infinity); // false
isFinite(NaN); // false

1
2
3



https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Infinity
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isFinite
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseFloat

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 8/67

the specified number format, then return the number

parsed up to that point. However the "+" operator

simply converts the string to NaN if there is an invalid

character contained within it. Just try parsing the

string "10.2abc" with each method by yourself in the

console and you'll understand the differences better.

Strings

Strings in JavaScript are sequences of Unicode characters. This
should be welcome news to anyone who has had to deal with
internationalization. More accurately, they are sequences of
UTF-16 code units; each code unit is represented by a 16-bit
number. Each Unicode character is represented by either 1 or
2 code units.

If you want to represent a single character, you just use a
string consisting of that single character.

To find the length of a string (in code units), access its length
property:

There's our first brush with JavaScript objects! Did we mention
that you can use strings like objects too? They have methods
as well that allow you to manipulate the string and access
information about the string:

'hello'.length; // 51

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Values,_variables,_and_literals#Unicode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#Methods

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 9/67

Other types

JavaScript distinguishes between null , which is a value that
indicates a deliberate non-value (and is only accessible
through the null keyword), and undefined , which is a value
of type undefined that indicates an uninitialized value — that
is, a value hasn't even been assigned yet. We'll talk about
variables later, but in JavaScript it is possible to declare a
variable without assigning a value to it. If you do this, the
variable's type is undefined . undefined is actually a
constant.

JavaScript has a boolean type, with possible values true and
false (both of which are keywords.) Any value can be
converted to a boolean according to the following rules:

1. false , 0 , empty strings (""), NaN , null , and undefined
all become false.

2. All other values become true.

You can perform this conversion explicitly using the
Boolean() function:

'hello'.charAt(0); // "h"
'hello, world'.replace('hello', 'goodbye'); //
'hello'.toUpperCase(); // "HELLO"

1
2
3

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 10/67

However, this is rarely necessary, as JavaScript will silently
perform this conversion when it expects a boolean, such as in
an if statement (see below). For this reason, we sometimes
speak simply of "true values" and "false values," meaning
values that become true and false , respectively, when
converted to booleans. Alternatively, such values can be called
"truthy" and "falsy", respectively.

Boolean operations such as && (logical and), || (logical or),
and ! (logical not) are supported; see below.

Variables

New variables in JavaScript are declared using one of three
keywords: let , const , or var.

let allows you to declare block-level variables. The declared
variable is available from the block it is enclosed in.

The following is an example of scope with a variable declared
with let :

Boolean(''); // false
Boolean(234); // true

1
2

let a;
let name = 'Simon';

1
2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 11/67

const allows you to declare variables whose values are never
intended to change. The variable is available from the block it
is declared in.

var is the most common declarative keyword. It does not
have the restrictions that the other two keywords have. This is
because it was traditionally the only way to declare a variable
in JavaScript. A variable declared with the var keyword is
available from the function it is declared in.

// myLetVariable is *not* visible out here

for (let myLetVariable = 0; myLetVariable < 5;
 // myLetVariable is only visible in here
}

// myLetVariable is *not* visible out here

1
2
3
4
5
6
7

const Pi = 3.14; // variable Pi is set
Pi = 1; // will throw an error because you can

1
2

var a;
var name = 'Simon';

1
2

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 12/67

An example of scope with a variable declared with var :

If you declare a variable without assigning any value to it, its
type is undefined .

An important difference between JavaScript and other
languages like Java is that in JavaScript, blocks do not have
scope; only functions have scope. So if a variable is defined
using var in a compound statement (for example inside an
if control structure), it will be visible to the entire function.
However, starting with ECMAScript 2015, let and const
declarations allow you to create block-scoped variables.

Operators

JavaScript's numeric operators are + , - , * , / and % which is
the remainder operator (which is not the same as modulo.)
Values are assigned using = , and there are also compound
assignment statements such as += and -= . These extend out
to x = x operator y .

// myVarVariable *is* visible out here

for (var myVarVariable = 0; myVarVariable < 5;
 // myVarVariable is visible to the whole fun
}

// myVarVariable *is* visible out here

1
2
3
4
5
6
7

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Remainder_%28%29

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 13/67

You can use ++ and -- to increment and decrement
respectively. These can be used as prefix or postfix operators.

The + operator also does string concatenation:

If you add a string to a number (or other value) everything is
converted in to a string first. This might catch you up:

Adding an empty string to something is a useful way of
converting it to a string itself.

Comparisons in JavaScript can be made using < , > , <= and
>= . These work for both strings and numbers. Equality is a
little less straightforward. The double-equals operator
performs type coercion if you give it different types, with
sometimes interesting results:

x += 5;
x = x + 5;

1
2

'hello' + ' world'; // "hello world"1

'3' + 4 + 5; // "345"
 3 + 4 + '5'; // "75"

1
2

123 == '123'; // true
1 == true; // true

1
2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Addition
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 14/67

To avoid type coercion, use the triple-equals operator:

There are also != and !== operators.

JavaScript also has bitwise operations. If you want to use
them, they're there.

Control structures

JavaScript has a similar set of control structures to other
languages in the C family. Conditional statements are
supported by if and else ; you can chain them together if
you like:

123 === '123'; // false
1 === true; // false

1
2

var name = 'kittens';
if (name == 'puppies') {
 name += ' woof';
} else if (name == 'kittens') {
 name += ' meow';
} else {
 name += '!';
}
name == 'kittens meow';

1
2
3
4
5
6
7
8
9

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 15/67

JavaScript has while loops and do-while loops. The first is
good for basic looping; the second for loops where you wish
to ensure that the body of the loop is executed at least once:

JavaScript's for loop is the same as that in C and Java: it lets
you provide the control information for your loop on a single
line.

JavaScript also contains two other prominent for loops:
for ...of

while (true) {
 // an infinite loop!
}

var input;
do {
 input = get_input();
} while (inputIsNotValid(input));

1
2
3
4
5
6
7
8

for (var i = 0; i < 5; i++) {
 // Will execute 5 times
}

1
2
3

for (let value of array) {
 // do something with value

1
2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 16/67

and for ...in :

The && and || operators use short-circuit logic, which means
whether they will execute their second operand is dependent
on the first. This is useful for checking for null objects before
accessing their attributes:

Or for caching values (when falsy values are invalid):

JavaScript has a ternary operator for conditional expressions:

}3

for (let property in object) {
 // do something with object property
}

1
2
3

var name = o && o.getName();1

var name = cachedName || (cachedName = getName1

var allowed = (age > 18) ? 'yes' : 'no';1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 17/67

The switch statement can be used for multiple branches
based on a number or string:

If you don't add a break statement, execution will "fall
through" to the next level. This is very rarely what you want —
in fact it's worth specifically labeling deliberate fallthrough
with a comment if you really meant it to aid debugging:

switch (action) {
 case 'draw':
 drawIt();
 break;
 case 'eat':
 eatIt();
 break;
 default:
 doNothing();
}

1
2
3
4
5
6
7
8
9
10

switch (a) {
 case 1: // fallthrough
 case 2:
 eatIt();
 break;
 default:
 doNothing();
}

1
2
3
4
5
6
7
8

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 18/67

The default clause is optional. You can have expressions in
both the switch part and the cases if you like; comparisons
take place between the two using the === operator:

Objects

JavaScript objects can be thought of as simple collections of
name-value pairs. As such, they are similar to:

Dictionaries in Python.

Hashes in Perl and Ruby.

Hash tables in C and C++.

HashMaps in Java.

Associative arrays in PHP.

The fact that this data structure is so widely used is a
testament to its versatility. Since everything (bar core types) in
JavaScript is an object, any JavaScript program naturally
involves a great deal of hash table lookups. It's a good thing
they're so fast!

switch (1 + 3) {
 case 2 + 2:
 yay();
 break;
 default:
 neverhappens();
}

1
2
3
4
5
6
7

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 19/67

The "name" part is a JavaScript string, while the value can be
any JavaScript value — including more objects. This allows you
to build data structures of arbitrary complexity.

There are two basic ways to create an empty object:

And:

These are semantically equivalent; the second is called object
literal syntax, and is more convenient. This syntax is also the
core of JSON format and should be preferred at all times.

Object literal syntax can be used to initialize an object in its
entirety:

var obj = new Object();1

var obj = {};1

var obj = {
 name: 'Carrot',
 for: 'Max', // 'for' is a reserved word, use
 details: {
 color: 'orange',
 size: 12
 }
};

1
2
3
4
5
6
7
8

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 20/67

Attribute access can be chained together:

The following example creates an object prototype,
Person and an instance of that prototype, You .

Once created, an object's properties can again be accessed in
one of two ways:

obj.details.color; // orange
obj['details']['size']; // 12

1
2

function Person(name, age) {
 this.name = name;
 this.age = age;
}

// Define an object
var you = new Person('You', 24);
// We are creating a new person named "You" ag

1
2
3
4
5
6
7
8

//dot notation
obj.name = 'Simon';
var name = obj.name;

1
2
3

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 21/67

And...

These are also semantically equivalent. The second method
has the advantage that the name of the property is provided
as a string, which means it can be calculated at run-time.
However, using this method prevents some JavaScript engine
and minifier optimizations being applied. It can also be used
to set and get properties with names that are reserved words:

Starting in ECMAScript 5, reserved words may be

used as object property names "in the buff". This

means that they don't need to be "clothed" in quotes

when defining object literals. See the ES5 Spec.

// bracket notation
obj['name'] = 'Simon';

var name = obj['name'];
// can use a variable to define a key
var user = prompt('what is your key?')
obj[user] = prompt('what is its value?')

1
2

3
4
5
6

obj.for = 'Simon'; // Syntax error, because 'f
obj['for'] = 'Simon'; // works fine

1
2





https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Keywords
http://es5.github.io/#x7.6.1

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 22/67

For more on objects and prototypes see: Object.prototype.
For an explanation of object prototypes and object prototype
chains see: Inheritance and the prototype chain.

Starting in ECMAScript 2015, object keys can be

defined by variable using bracket notation upon being

created. {[phoneType]: 12345} is possible instead of

just var userPhone = {}; userPhone[phoneType] =

12345 .

Arrays

Arrays in JavaScript are actually a special type of object. They
work very much like regular objects (numerical properties can
naturally be accessed only using [] syntax) but they have one
magic property called 'length '. This is always one more than
the highest index in the array.

One way of creating arrays is as follows:

A more convenient notation is to use an array literal:



var a = new Array();
a[0] = 'dog';
a[1] = 'cat';
a[2] = 'hen';
a.length; // 3

1
2
3
4
5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 23/67

Note that array.length isn't necessarily the number of items
in the array. Consider the following:

Remember — the length of the array is one more than the
highest index.

If you query a non-existent array index, you'll get a value of
undefined returned:

If you take the above about [] and length into account, you
can iterate over an array using the following for loop:

var a = ['dog', 'cat', 'hen'];
a.length; // 3

1
2

var a = ['dog', 'cat', 'hen'];
a[100] = 'fox';
a.length; // 101

1
2
3

typeof a[90]; // undefined1

for (var i = 0; i < a.length; i++) {
 // Do something with a[i]
}

1
2
3

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 24/67

ECMAScript introduced the more concise for ...of loop for
iterable objects such as arrays:

You could also iterate over an array using a for ...in loop. But
if someone added new properties to Array.prototype , they
would also be iterated over by this loop. Therefore this loop
type is not recommended for arrays.

Another way of iterating over an array that was added with
ECMAScript 5 is forEach() :

If you want to append an item to an array simply do it like
this:

for (const currentValue of a) {
 // Do something with currentValue
}

1
2
3

['dog', 'cat', 'hen'].forEach(function(current
 // Do something with currentValue or array[i
});

1
2
3

a.push(item);1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 25/67

Arrays come with a number of methods. See also the full
documentation for array methods.

Method name Description

a.toString()
Returns a string with the
toString() of each element
separated by commas.

a.toLocaleString()
Returns a string with the
toLocaleString() of each
element separated by commas.

a.concat(item1[,
item2[, ...[,
itemN]]])

Returns a new array with the
items added on to it.

a.join(sep)
Converts the array to a string —
with values delimited by the sep
param

a.pop()
Removes and returns the last
item.

a.push(item1, ...,
itemN)

Appends items to the end of the
array.

a.reverse() Reverses the array.

a.shift()
Removes and returns the first
item.

a.slice(start[,
end])

Returns a sub-array.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 26/67

Method name Description

a.sort([cmpfn])
Takes an optional comparison
function.

a.splice(start,
delcount[, item1[,
...[, itemN]]])

Lets you modify an array by
deleting a section and replacing it
with more items.

a.unshift(item1[,
item2[, ...[,
itemN]]])

Prepends items to the start of the
array.

Functions

Along with objects, functions are the core component in
understanding JavaScript. The most basic function couldn't be
much simpler:

This demonstrates a basic function. A JavaScript function can
take 0 or more named parameters. The function body can
contain as many statements as you like, and can declare its
own variables which are local to that function. The return
statement can be used to return a value at any time,

function add(x, y) {
 var total = x + y;
 return total;
}

1
2
3
4

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 27/67

terminating the function. If no return statement is used (or an
empty return with no value), JavaScript returns undefined .

The named parameters turn out to be more like guidelines
than anything else. You can call a function without passing the
parameters it expects, in which case they will be set to
undefined .

You can also pass in more arguments than the function is
expecting:

That may seem a little silly, but functions have access to an
additional variable inside their body called arguments , which
is an array-like object holding all of the values passed to the
function. Let's re-write the add function to take as many
values as we want:

add(); // NaN
// You can't perform addition on undefined

1
2

add(2, 3, 4); // 5
// added the first two; 4 was ignored

1
2

function add() {
 var sum = 0;
 for (var i = 0, j = arguments.length; i < j;
 sum += arguments[i];
 }

1
2
3
4

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 28/67

That's really not any more useful than writing 2 + 3 + 4 + 5
though. Let's create an averaging function:

This is pretty useful, but it does seem a little verbose. To
diminish this code a bit more we can look at substituting the
use of the arguments array through Rest parameter syntax. In
this way we can pass in any number of arguments into the
function while keeping our code minimal. The rest parameter
operator is used in function parameter lists with the format:
...variable and it will include within that variable the entire list
of uncaptured arguments that the function was called with.

 return sum;
}

add(2, 3, 4, 5); // 14

5
6
7
8
9

function avg() {
 var sum = 0;
 for (var i = 0, j = arguments.length; i < j;
 sum += arguments[i];
 }
 return sum / arguments.length;
}

avg(2, 3, 4, 5); // 3.5

1
2
3
4
5
6
7
8
9

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 29/67

We will also replace the for loop with a for...of loop to return
the values within our variable.

In the above code the variable args holds all the

values that were passed into the function.

It is important to note that wherever the rest

parameter operator is placed in a function declaration

it will store all arguments after its declaration, but not

before. i.e. function avg(firstValue, ...args) will store the

first value passed into the function in the firstValue

variable and the remaining arguments in

args. Another useful function but it does lead us to a

new problem. The avg() function takes a comma

separated list of arguments — but what if you want

function avg(...args) {
 var sum = 0;
 for (let value of args) {
 sum += value;
 }
 return sum / args.length;
}

avg(2, 3, 4, 5); // 3.5

1
2
3
4
5
6
7
8
9



11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 30/67

to find the average of an array? You could just rewrite

the function as follows:

But it would be nice to be able to reuse the function that
we've already created. Luckily, JavaScript lets you call a
function with an arbitrary array of arguments, using the
apply() method of any function object.

The second argument to apply() is the array to use as
arguments; the first will be discussed later on. This
emphasizes the fact that functions are objects too.

You can achieve the same result using the spread

operator in the function call.

function avgArray(arr) {
 var sum = 0;
 for (var i = 0, j = arr.length; i < j; i++)
 sum += arr[i];
 }
 return sum / arr.length;
}

avgArray([2, 3, 4, 5]); // 3.5

1
2
3
4
5
6
7
8
9

avg.apply(null, [2, 3, 4, 5]); // 3.51



https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 31/67

For instance: avg(...numbers)

JavaScript lets you create anonymous functions.

This is semantically equivalent to the function avg() form.
It's extremely powerful, as it lets you put a full function
definition anywhere that you would normally put an
expression. This enables all sorts of clever tricks. Here's a way
of "hiding" some local variables — like block scope in C:

var avg = function() {
 var sum = 0;
 for (var i = 0, j = arguments.length; i < j;
 sum += arguments[i];
 }
 return sum / arguments.length;
};

1
2
3
4
5
6
7

var a = 1;
var b = 2;

(function() {
 var b = 3;
 a += b;
})();

1
2
3
4
5
6
7
8
9

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 32/67

JavaScript allows you to call functions recursively. This is
particularly useful for dealing with tree structures, such as
those found in the browser DOM.

This highlights a potential problem with anonymous
functions: how do you call them recursively if they don't have
a name? JavaScript lets you name function expressions for
this. You can use named IIFEs (Immediately Invoked Function
Expressions) as shown below:

a; // 4
b; // 2

10

function countChars(elm) {
 if (elm.nodeType == 3) { // TEXT_NODE
 return elm.nodeValue.length;
 }
 var count = 0;
 for (var i = 0, child; child = elm.childNode
 count += countChars(child);
 }
 return count;
}

1
2
3
4
5
6
7
8
9
10

var charsInBody = (function counter(elm) {
 if (elm.nodeType == 3) { // TEXT_NODE
 return elm.nodeValue.length;

1
2
3

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 33/67

The name provided to a function expression as above is only
available to the function's own scope. This allows more
optimizations to be done by the engine and results in more
readable code. The name also shows up in the debugger and
some stack traces, which can save you time when debugging.

Note that JavaScript functions are themselves objects — like
everything else in JavaScript — and you can add or change
properties on them just like we've seen earlier in the Objects
section.

Custom objects

For a more detailed discussion of object-oriented

programming in JavaScript, see Introduction to

Object Oriented JavaScript.

In classic Object Oriented Programming, objects are
collections of data and methods that operate on that data.
JavaScript is a prototype-based language that contains no

 }
 var count = 0;
 for (var i = 0, child; child = elm.childNode
 count += counter(child);
 }
 return count;
})(document.body);

4
5
6
7
8
9
10



https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 34/67

class statement, as you'd find in C++ or Java (this is sometimes
confusing for programmers accustomed to languages with a
class statement). Instead, JavaScript uses functions as classes.
Let's consider a person object with first and last name fields.
There are two ways in which the name might be displayed: as
"first last" or as "last, first". Using the functions and objects
that we've discussed previously, we could display the data like
this:

This works, but it's pretty ugly. You end up with dozens of
functions in your global namespace. What we really need is a

function makePerson(first, last) {
 return {
 first: first,
 last: last
 };
}
function personFullName(person) {
 return person.first + ' ' + person.last;
}
function personFullNameReversed(person) {
 return person.last + ', ' + person.first;
}

s = makePerson('Simon', 'Willison');
personFullName(s); // "Simon Willison"
personFullNameReversed(s); // "Willison, Simon

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 35/67

way to attach a function to an object. Since functions are
objects, this is easy:

There's something here we haven't seen before: the this
keyword. Used inside a function, this refers to the current
object. What that actually means is specified by the way in
which you called that function. If you called it using dot
notation or bracket notation on an object, that object
becomes this . If dot notation wasn't used for the call, this
refers to the global object.

function makePerson(first, last) {
 return {
 first: first,
 last: last,
 fullName: function() {
 return this.first + ' ' + this.last;
 },
 fullNameReversed: function() {
 return this.last + ', ' + this.first;
 }
 };
}

s = makePerson('Simon', 'Willison');
s.fullName(); // "Simon Willison"
s.fullNameReversed(); // "Willison, Simon"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#Accessing_properties

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 36/67

Note that this is a frequent cause of mistakes. For example:

When we call fullName() alone, without using
s.fullName() , this is bound to the global object. Since
there are no global variables called first or last we get
undefined for each one.

We can take advantage of the this keyword to improve our
makePerson function:

s = makePerson('Simon', 'Willison');
var fullName = s.fullName;

fullName(); // undefined undefined

1
2

3

function Person(first, last) {
 this.first = first;
 this.last = last;
 this.fullName = function() {
 return this.first + ' ' + this.last;

 };
 this.fullNameReversed = function() {
 return this.last + ', ' + this.first;
 };
}
var s = new Person('Simon', 'Willison');

1
2
3
4
5

6
7
8
9
10
11

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 37/67

We have introduced another keyword: new . new is strongly
related to this . It creates a brand new empty object, and
then calls the function specified, with this set to that new
object. Notice though that the function specified with this
does not return a value but merely modifies the this object.
It's new that returns the this object to the calling site.
Functions that are designed to be called by new are called
constructor functions. Common practice is to capitalize these
functions as a reminder to call them with new .

The improved function still has the same pitfall with calling
fullName() alone.

Our person objects are getting better, but there are still some
ugly edges to them. Every time we create a person object we
are creating two brand new function objects within it —
wouldn't it be better if this code was shared?

function personFullName() {
 return this.first + ' ' + this.last;
}
function personFullNameReversed() {
 return this.last + ', ' + this.first;
}
function Person(first, last) {
 this.first = first;
 this.last = last;
 this.fullName = personFullName;
 this.fullNameReversed = personFullNameRevers
}

1
2
3
4
5
6
7
8
9
10
11
12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 38/67

That's better: we are creating the method functions only once,
and assigning references to them inside the constructor. Can
we do any better than that? The answer is yes:

Person.prototype is an object shared by all instances of
Person . It forms part of a lookup chain (that has a special
name, "prototype chain"): any time you attempt to access a
property of Person that isn't set, JavaScript will check
Person.prototype to see if that property exists there
instead. As a result, anything assigned to Person.prototype
becomes available to all instances of that constructor via the
this object.

function Person(first, last) {
 this.first = first;
 this.last = last;
}
Person.prototype.fullName = function() {
 return this.first + ' ' + this.last;
};
Person.prototype.fullNameReversed = function()
 return this.last + ', ' + this.first;
};

1
2
3
4
5
6
7
8
9
10

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 39/67

This is an incredibly powerful tool. JavaScript lets you modify
something's prototype at any time in your program, which
means you can add extra methods to existing objects at
runtime:

Interestingly, you can also add things to the prototype of built-
in JavaScript objects. Let's add a method to String that
returns that string in reverse:

s = new Person('Simon', 'Willison');
s.firstNameCaps(); // TypeError on line 1: s.f

Person.prototype.firstNameCaps = function firs
 return this.first.toUpperCase();
};
s.firstNameCaps(); // "SIMON"

1
2
3
4
5
6
7

var s = 'Simon';
s.reversed(); // TypeError on line 1: s.revers

String.prototype.reversed = function reversed
 var r = '';
 for (var i = this.length - 1; i >= 0; i--) {
 r += this[i];
 }
 return r;
};

1
2
3
4
5
6
7
8
9
10

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 40/67

Our new method even works on string literals!

As mentioned before, the prototype forms part of a chain. The
root of that chain is Object.prototype , whose methods
include toString() — it is this method that is called when
you try to represent an object as a string. This is useful for
debugging our Person objects:

s.reversed(); // nomiS

11
12

'This can now be reversed'.reversed(); // desr1

var s = new Person('Simon', 'Willison');
s.toString(); // [object Object]

Person.prototype.toString = function() {
 return '<Person: ' + this.fullName() + '>';
}

s.toString(); // "<Person: Simon Willison>"

1
2
3
4
5
6
7
8

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 41/67

Remember how avg.apply() had a null first argument? We
can revisit that now. The first argument to apply() is the
object that should be treated as 'this '. For example, here's a
trivial implementation of new :

This isn't an exact replica of new as it doesn't set up the
prototype chain (it would be difficult to illustrate). This is not
something you use very often, but it's useful to know about. In
this snippet, ...args (including the ellipsis) is called the "rest
arguments" — as the name implies, this contains the rest of
the arguments.

Calling

is therefore almost equivalent to

function trivialNew(constructor, ...args) {
 var o = {}; // Create an object
 constructor.apply(o, args);
 return o;
}

1
2
3
4
5

var bill = trivialNew(Person, 'William', 'Oran1

var bill = new Person('William', 'Orange');1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 42/67

apply() has a sister function named call , which again lets
you set this but takes an expanded argument list as
opposed to an array.

Inner functions

JavaScript function declarations are allowed inside other
functions. We've seen this once before, with an earlier
makePerson() function. An important detail of nested
functions in JavaScript is that they can access variables in their
parent function's scope:

function lastNameCaps() {
 return this.last.toUpperCase();
}
var s = new Person('Simon', 'Willison');
lastNameCaps.call(s);
// Is the same as:
s.lastNameCaps = lastNameCaps;
s.lastNameCaps(); // WILLISON

1
2
3
4
5
6
7
8

function parentFunc() {
 var a = 1;

 function nestedFunc() {
 var b = 4; // parentFunc can't use this
 return a + b;
 }
 return nestedFunc(); // 5
}

1
2
3
4
5
6
7
8
9

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 43/67

This provides a great deal of utility in writing more
maintainable code. If a function relies on one or two other
functions that are not useful to any other part of your code,
you can nest those utility functions inside the function that
will be called from elsewhere. This keeps the number of
functions that are in the global scope down, which is always a
good thing.

This is also a great counter to the lure of global variables.
When writing complex code it is often tempting to use global
variables to share values between multiple functions — which
leads to code that is hard to maintain. Nested functions can
share variables in their parent, so you can use that
mechanism to couple functions together when it makes sense
without polluting your global namespace — "local globals" if
you like. This technique should be used with caution, but it's a
useful ability to have.

Closures

This leads us to one of the most powerful abstractions that
JavaScript has to offer — but also the most potentially
confusing. What does this do?

}9

function makeAdder(a) {
 return function(b) {
 return a + b;
 };
}

1
2
3
4

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 44/67

The name of the makeAdder() function should give it away: it
creates new 'adder' functions, each of which, when called with
one argument, adds it to the argument that it was created
with.

What's happening here is pretty much the same as was
happening with the inner functions earlier on: a function
defined inside another function has access to the outer
function's variables. The only difference here is that the outer
function has returned, and hence common sense would seem
to dictate that its local variables no longer exist. But they do
still exist — otherwise the adder functions would be unable to
work. What's more, there are two different "copies" of
makeAdder() 's local variables — one in which a is 5 and one
in which a is 20. So the result of those function calls is as
follows:

Here's what's actually happening. Whenever JavaScript
executes a function, a 'scope' object is created to hold the
local variables created within that function. It is initialized with

}
var x = makeAdder(5);
var y = makeAdder(20);
x(6); // ?
y(7); // ?

5
6
7
8
9

x(6); // returns 11
y(7); // returns 27

1
2

11/4/2017 A re-introduction to JavaScript (JS tutorial) - JavaScript | MDN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript 45/67

any variables passed in as function parameters. This is similar
to the global object that all global variables and functions live
in, but with a couple of important differences: firstly, a brand
new scope object is created every time a function starts
executing, and secondly, unlike the global object (which is
accessible as this and in browsers as window) these scope
objects cannot be directly accessed from your JavaScript code.
There is no mechanism for iterating over the properties of the
current scope object, for example.

So when makeAdder() is called, a scope object is created with
one property: a , which is the argument passed to the
makeAdder() function. makeAdder() then returns a newly
created function. Normally JavaScript's garbage collector
would clean up the scope object created for makeAdder() at
this point, but the returned function maintains a reference
back to that scope object. As a result, the scope object will not
be garbage-collected until there are no more references to
the function object that makeAdder() returned.

Scope objects form a chain called the scope chain, similar to
the prototype chain used by JavaScript's object system.

A closure is the combination of a function and the scope
object in which it was created. Closures let you save state —
as such, they can often be used in place of objects. You can
find several excellent introductions to closures.

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

