Caffeinated Crash Course in PHP
SIPB IAP 2010

Instructor: Steve Levine '11

http://sipb-iap.scripts.mit.edu/2010/cccphp/

@

s

sipb-iap-caffeinatedphp@mit.edu

Slide 1


http://sipb-iap.scripts.mit.edu/2010/cccphp/
mailto:sipb-iap-caffeinatedphp@mit.edu

About This Class

Hey! I'm Steve Levine '11
No, there 1sn't actually caffeine, sorry... :-)

PLEASE ask questions at any time (raise hands
and/or yell - I don't really mind)

If you're confused about something, chances are
someone else 1s too, so please ask!

Slide 2



About This Class

We'll be moving along briskly today!

PHP 1s a big language, and we only have ~3 hrs

I'll assume basic programming experience (1.e.,
variables, 1f statements, etc.)

Knowledge of HTML 1s helpful, but isn't required.
You'll pick 1t up as we go.

Slide 3



Table of Contents

What is PHP?

PHP Configuration

PHP Syntax

Using PHP to make Websites
Cookies and Sessions

(5-10 minute break)

MySQL with PHP

PHP Security

Basic AJAX

Slide 4
Time pending — PHP extensions



About This Class

That's a lot of stuff! Hopefully we'll get through at
all. If you think I'm being too slow, feel free to tell
me and I'll speed up

Any questions before we start?

Slide 5



What is PHP?

Slide 6



What is PHP?

PHP 1s a general-purpose programming language
Almost always used 1n practice for the web

Stands for PHP: Hypertext Preprocessor (yes, a
recursive acronym...)

Interpreted language, not compiled
Good at interacting with HTML

Can add extensions to PHP for more functionality

Slide 7



What is PHP?

PHP code runs on a web-server, not on the client
(1.e., your own) computer.

Hence, PHP code called 'server side script’

PHP dynamically generates the websites you see 1n
your internet browser.

Regular HTML (non-PHP) websites: HTML 1s just sent
straight to your browser with no modification.

PHP websites: PHP code files are first passed through the
PHP interpreter to produce HTML, which is then sent to
your browser Slide 8




GET /index.html HFTP/1.1

Caffeinated Crash Course in PHP
SIPB IAP 2009
Tossany By 13,7:30-10.20m, 8a0m

Ho ket bt o e 21

S ot

L PP et st R o T P, ” ARy b 5 IWESome FH-P 358 508 STET R VUEDd 1 60
o ks f et oo e ek o ey ceres e mebse. i o worc, L PP ok e s e M. St = cplyed 1 s
i bomsr, T s b s e VT30 1 7 ) 5+t ech vou e concapts e .o e s, & wel

oo 00 SR, SECLITY, PP ST ST 5 LR (1 €655 OLRS8 WHUSGE) 310 G0 (1 3 M), nd e, Some b
Erocramg expanerce v femkay KT & Rty et
Som ks mat el covere

5 o, e, o, chmses, o).

e

+ LBRO PP I s MySE bt

HTML

Slide 9



PHP PHP HTML

interpreter
g g

Caffeinated Crash Course in PHP
SIPB IAP 2009

Tty Jry 13,7910 0, 2o

R E———

5 o, e, o, chmses, o).

+ LBRO PP I s MySE bt

Ao 10 RS or s i fr s, 1 acoeect & o cou s 4 ot el fcu e sl 0 tend, 1.t 501 can Ost
Feuch estrate b mar pecpe .

Slide 10




How PHP Works on the We

When a webserver receives a request for a PHP
page, 1t first passes it through the PHP interpreter.

The PHP interpreter runs your PHP code, which
outputs HTML.

Your code can do whatever it wants to create the
HTML — access a MySQL database, etc. This 1s
what makes the page interesting and dynamic.

The produced HTML 1s sent to the client who made
the request, and displayed in the web browser.

Slide 11



How PHP Works

PHP files look a lot like HTML files, except with
special tags to mark sections of code: <?php and 7>

PHP parser evaluates code within these sections, and
replaces 1t with the resulting output

Anything not inside the PHP sections is 1ignored by
the PHP parser and simply outputted as HTML

The filename extension 1s nearly always .php (can
be changed, however)

Slide 12



Example (examplel.php)

PHP source code:

<html>
<head><title>I love PHP!</title>
</head>
<body>

<?php

print "<p>Hello, World!</p>";
print "<p>This is some PHP code. Note that it is embedded in a
regular HTML file!</p>";
9 7>
10
11 </body>
12 </html>

Slide 13



Example (examplel.php)

Output from PHP parser that is sent to browser:

<html>
<head><title>I love PHP!</title>
</head>
<body>

<p>Hello, World!</p><p>This is some PHP code. Note that it is embedded in
reqgular HTML file!</p>

</body>

8 </html>

*Note that the <?php and 7> tags don't appear in the output.
*Only the output appears

Reqular HTML file now!

Slide 14



How PHP Works

Recap: PHP outputs HTML-formatted data.

The client computer will only see the resultant
HTML output. Won't see the original PHP source
code

The client has no 1dea that the page 1s being
generated dynamically on the server — all 1t does 1s

display the HTML! Abstraction.

Slide 15



PHP Configuration

Slide 16



PHP Configuration

PHP has a number of configuration options

Default settings are in a file called php.ini (location
depends on 1nstallation)

Additionally, you can put a php.ini1 file in any folder
of your webpage that applies just to that folder

php.in1 can tell PHP to load certain extensions for
your code (i.e., MySQL1, which will be discussed
later)

Slide 17



PHP Configuration

To see all of PHP's current settings: php_info()
function

Causes PHP to print a nice, pretty webpage that lists
MANY settings

Usetul for debugging, but don't leave php_info() on
your website. Hackers could try and find potential
vulnerabilties to exploit

Some example settings include:
max_execution_time, memory_limit, etc.

Slide 18



PHP Version 5.2.6

System Linux bees-knees.mit.edu 2.6.27.9-73.fc9.x86_64 #1 SMP Tue Dec 16
14:54:03 EST 2008 x86 64

Build Date May 8 2008 10:23:05

Configure *Jeonfigure' '-build=x86_64-redhat-linux-gnu' '--host=x86_64-redhat-

Command linux-gnu’ '-target=x86_64-redhat-inux-gnu’ ‘--program-prefix=""--prefix=fusr'
‘--exec-prefin=/usr' '-bindir=/usr/bin’' '--sbindir=/usr/sbin' '--sysconfdir=/etc'
‘--datadir=/usr/share' '-includedir=/usrfinclude’ --libdir=fusr/lib64*
'-dibexecdir=fusrflibexec' '-localstatedir=/var' '--sharedstatedir=/usr/com’
*--mandir=/usr/share/man’ '-infodir=/usr/sharefinfo' --cache-
file=../config.cache' '-with-libdir=lib64' '-with-config-file-path=/etc' '-with-
configfile-scan-dir=/etc/php.d' '--disable-debug’ '--with-pic' '--disable-rpath’
‘—without-pear' '-with-bz2' '--with-curl' --with-exec-dir=fusr/bin' '--with-freetype-
dir=fusr' "--with-png-dir=/usr’ '--enable-gd-nativettf' '--without-gdbm’ *--with-
gettext' '-with-gmp' '--with-iconv' '--with-jpeg-dir=fusr' '--with-openssl’
*-with-png' '-with-expat-dir=fusr' *-with-pcre-regex=/usr' "-with-zlib* *--with-
layout=GNU' '--enable-exif' '--enable-ftp' --enable-magic-gquotes' '--enable-
sockets' '--enabl vsem' '--enabl vshm' '--enable-sysvmsg' '--enable-
track-vars' '--enable-trans-sid' '--enableyp' '--enable-wddx' '-with-kerberos’
‘--enable-ucd-snmp-hack’ '--with-unix0DBC=shared./usr' '--enable-memory-
limit* --enable-shmop' '--enable-calendar' '--enable-dbx' *--enable-dio’
‘--without-mime-magic' '--without-sglite’ '--with-libxml-dir=/usr' '-with-=xml’
‘--with-system-tzdata’ '-enable-force-cgi-redirect' "--enable-pentl *--with-
imap=shared' '--with-map-ssl' '-enable-mbstring=shared' '--enable-mbstr-
enc-trans’ '--enable-mbregex’ '-with-ncurses=shared"' '-with-gd=shared
‘--enable-bemath=shared' '--enable-dba=shared"' '--with-db4=/usr' '--with-
xmirpc=shared’ '-with-ldap=shared' '-with-ldap-sasl' "--with-
mysql=shared,/usr' '--with-mysgli=shared./usr/bin/mysgl_config' --enable-
dom=shared' '-with-dom-«slt=/usr' '--with-dom-exsit=/usr' "--with-
pgsgl=shared' '-with-snmp=shared,/usr' '-enable-soap=shared' --with-
usl=shared.jusr' '--enable-xmireader=shared’ '--enable-«miwriter=shared"
'--enable-fastcgi' '-enable-pdo=shared" '--with-
pdo-odbc=shared,unix0DBC,/usr' --with-pdo-mysql=shared,/usr' "--with-
pdo-pgsql=shared,fusr' '-with-pdo-sglite=shared,/usr' '--enable{son=shared'
‘--enablezip=shared' --with-readline’ '--enable-dbase=shared' '--with-
pspell=shared' '-with-mcrypt=shared,/usr' '-with-mhash=shared,/usr' '--with-
tidy=shared./usr' "--with-mssql=shared,/usr'

Server API CGlfFastCaGl

Virtual disabled

Directory

Support

Slide 19



PHP Configuration

Other way to set PHP options: from the script itselt

The 1n1_set() and 1n1_get() functions allow you to
get and set configuration options from PHP code

EX: ini set('display errors','On');

Slide 20



PHP Syntax



Syntax - Overview

Roll up your sleaves, it's time to start coding!

Syntax looks simi

ar to C/C++/Java

Loose with types

1ke Python

PHP always lies between <?php and 7> tags

End lines with a ; just like Java, C, and C++;

PHP 1s cAsE sEnS1T1Ve like many other languages

Slide 22



Syntax - Variables

PHP code can have variables! (Variables are
symbols that hold values)

All PHP variables MUST begin with dollar-sign ($)

examples: $username, $color

Commom beginner mistake to forget the $, then you
have hard-to-spot errors

Can hold many types of values: integers, decimals,
strings of text, classes

Slide 23



Syntax - Variables

Don't need to declare variables before you use them

Loose with types: variables can hold different types
of values at different times

$var = 4; Later on: $var = 'This is text';

Although being loose with types can be convenient,
it also opens the door for coding errors

Slide 24



Syntax - Assighment

Use the = operator to assign values to variables

// Strings
$yummy = "potato";

// Number variables

$c = 3;

print "<p>" . $c/2 . "</p>"; // You don't have to worry about
// integers/decimals in PHP.

Slide 25



Syntax - Comments

PHP supports C-style and C++-style comments

// This is a comment. It isn't interpreted by
/ the PHP compiler.

* This 1S
also a comment. Just like in C! */

3
4 /
5
6 /
7

Slide 26



Syntax - Expressions

Expressions evaluate to values in PHP.

31 // Expressions example

32 $c = 3.141592653;

33

34 $c + 1; // Evaluates to 4.141592653

35 2*¥($c + 1); // Evaluates to 8.283185306
36 // Assignments also evaluate to things
37 $c = 5; // Evaluates to 5

Slide 27



Syntax - Operators

Common operators:

+ Addition

- Subtraction

* Multiplication

/ Divide

% Modulus

. String Concatenation

-> Member field / function

( ) Parenthesis

== Equal to

= Not equal to

> >= (Greater than
<, <= Less than

I Not

and (&&)

or (I

XOTr
Slide 28



Syntax - String Quoting

PHP has two ways to quote strings — double quotes
(”’) and single quotes (').

Quotes go both at the beginning and at the end of
the string

Single quotes are interpreted literally — exactly what
1s 1inside the quotes

Double quotes can have values embedded in them —
not interpreted literally

Slide 29



Syntax - String Quoting

Here's an example:

// An example demonstrating the difference between
// single and double quoting.

$food = "potatoes";

$double quoted = "I like to eat $food.";

$single quoted = 'I like to eat $food.';
print "<p>$double quoted</p>";
print "<p>$single quoted</p>";

The first example will print:

I like to eat potatoes.

The second will print:

I like to eat $food.

Slide 30



Syntax - Arrays

Arrays are collections of values

PHP arrays are sort of like 'dictionaries' in other
languages such as Python

Accessed via a key. Each key 1s associated with
exactly one value

A key may be an integer ('index'), a string, or any
other type

Slide 31



Arrays - Indexing

Here's an example that uses an integers as keys:

// Arrays
63 $languages = array('PHP', 'Java', 'C++', 'Python');

64 print "<p>The first language is $languages[0]!</p>";
65 print "<p>The second language is $languages[l]!</p>";

Prints:

The first language 1s PHP!

I'he second language 1s Javal!

Slide 32



Arrays - Adding New J

To add a value to the end of an array:

74 // Adding to an array example

75 $langquages|[] = "Perl";

Arrays, unlike languages such as Java, C, and C++,
can be made arbitrarily long using this technique

However, doing this a lot is slow

Slide 33



It statements are important if you want to do

Syntax - if

something interesting!

// If statement example
42 if($favorite color == "blue") {

43
44
45
46

// This code will execute if
// $favorite color is blue
// ...

47 } else if ($favorite color == "red") {

48

49

50 } else {
51

52

53

54 }

// The favorite color is red.
// ...

// None of the above! The favorite
// color must be something else.
// ...

Slide 34



Syntax - If

The condition of the 1f statement will be evaluated
by PHP to a boolean (either 'true' or 'false')

Some things that get evaluated to false:

T'he boolean value 'false’ (trivial case)

The number O
Zero-length strings
Null

Zero-length errors

Other things evaluate to true

Slide 35



Syntax - for loop

The for loop:

$languages = array('PHP', 'Java', 'C++', 'Python');
// For-loop example with an array
for($c = 0; $c < count($languages); $c++) {

$lang = $langquages|[$c];
print "<p>The language at index $c is $lang.</p>";

Paramters: Initialization, Looping condition,
Increment condition

But, there's actually a better way to loop through
arrays...

Slide 36



Syntax - foreach loop

The foreach loop:

79 // Example of using non-integer keys

80 $languages = array('best' => 'PHP', 'tastiest' => 'Java’,
'funkiest' => 'Scheme');

81

82

83 // A for-each loop.

84 foreach($languages as $adjective => $lang) {

85 print "<p>The $adjective language is $lang.</p>";
86 }

Slide 37



Syntax - foreach loop

Or, 1if you don't really care about the keys:

88 // If we didn't care about the key, we could also say:
89 foreach($languages as $lang) {

90 print "<p>$lang is a programming language.</p>";
91 }

Slide 38



Syntax - functions

Functions are very important! They help group your
code together, save you time, and make your code
cleaner.

Functions can return values, or return nothing

Ex. $num = count(%$arr);

Count is a function that returns the size of array $arr.
This returned value is stored in the variable $num.

To return a value, use the return statement.

Slide 39



Syntax - functions

Declare a function with the function keyword

95 function hereIsAFunction() {
96 print "This is a function.";

97 print "It doesn't really do very much.";
98 }

Note that this function doesn't return a value (it just
returns things)

Calling functions

Slide 40



Syntax - functions

Functions can optionally accept argument, or

values that allow a function to do what you want it
to do

Functions can call other functions

Functions can call themselves (‘recursion’)

Slide 41



Syntax - functions

Here are some examples:

101 function countDown($start) {

102 while ($start >= 0) {

103 print "<p>$start...</p>";
104 $start--;

105

106 }

107

108 function squareNumber($x) {
109 return $x * $x;

110 }

Slide 42



Some Useful Functions

isset($var) — Returns true if $var has been set.

Examples:
isset($favorite_color)

isset($_GET['name']) will return true if $_ GET['name']
has a value (namely, the browser has sent a 'name'
parameter in the URL)
explode($delimiter, $string) — breaks up $string into
an array of substrings, separaring using $delimiter

count()

Slide 43



Some Useful Functions

print_r($array) — prints an array. Useful for
debugging

require_once($filename) — Include another file
ini_set($setting, value) (discussed earlier)

header($data) — If at the beginning, outputs HTTP
header data

Can be used for redirects (i.e., to secure HTTPS pages)

Slide 44



Syntax - Variable Scope

Variables used within a function are local only to
that function

They can't be accessed outside of the function — they
basically disappear after the function 1s called

If you've declared a variable outside of a function
and you want to use 1t inside of the function, use the
global keyword

Slide 45



Syntax - Variable Scope

Here 1s an example:

114 // Global variables example

115 $global var = 4;

116 function foo() {

117 // Now we can use $global var. Otherwise it would

118 // just be treated as any old local variable
119 global $global var;

120 print $globalvar;

121 }

Slide 46



Syntax - classes

Classes are the building block of object-oriented
programming (OOP)

I'm not going to go too in depth in this; just the
basics (OOP 1s a pretty large subject!)

Don't worry if you're confused and you haven't seen
OQOP before; I'm skipping over a lot

Slide 47



Syntax - Classes

Classes are basically bundles of variables and
functions that should logically be grouped together

PHP classes start with the class keyword

. Scoping resolution operator — used to access a
super-class and call it's functions

-> operator use to access functions/fields of classes

Fields and functions 1n a class can be public and
private

Slide 48



Syntax - Classes

126 // Class example

127 class user {

public $ID;

public $first name;
public $last name;

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145 }

function  construct($first, $last, $id) {
$this->ID = $id;
$this->first name = $first;
$this->last name = $last;

}

function getName() {
return $this->first name . " " . $this->last name;
}

function toString() {
return $this->getName() . "(" . $this->ID . ")";
}

Slide 49



Syntax - Extend classes

147 class facebook user extends user {

148 // Since this class extends user, it has everything that
149 // user has. However, override the toString function to do
150 // something else

151 public $network;

152

153 // Provide a new constructor that uses the old one

154 function  construct($first, $last, $id, $net) {

155 parent:: construct($first, $last, $id);

156 $this->network = $net;

157 }

158

159 // Override user::toString()

160 function toString() {

161 return $this->getName() . "(" . $this->network . ")";
162 }

163 }

Slide 50




Syntax - Classes

Classes can be used as follows:

165 $some user = new user("Steve", "Levine", "123");
166 print "<p>$some user->toString()</p>";
167

168 $another user = new facebook user("Steve", "Levine", "123",
IIMITII ) ;
169 print "<p>%$another user->toString()</p>";

Note the use of the 'new' keyword in generating
instances of classes

Also, note the user of the '->' operator to access
member functions

Slide 51



Syntax

That's about 1t for syntax!

Are there any questions before we move on’?

Slide 52



Using PHP to make
Websites!



PHP with Websites

Although PHP 1s technically a general-purpose
language, it's almost always used to output HTML

(or at least web-related XML 1n the case of some
AJAX)

You already actually know most of what you need
to know to make websites, just from knowing syntax

A few more things needed to etffectively make a
website

Slide 54



PHP Magic Variables

There are several useful PHP 'super global' arrays
that are automagically created by PHP when you
view a website

$_GET, $_POST, $_REQUEST, $_SERVER,
$_COOKIE, and $_SESSION.

I'll talk about $ COOKIE and $ SESSION later

Al

| of these are arrays that contain useful

information that you can use 1n making your website

Slide 55



$ GET

$_GET contains parameters passed to your script
from the web-browser

Unlike POST parameters, GET parameters are

visible in your URL bar

http://example.com/index.php’key | =valuel &key2=value2&...
Within index.php, $ GET['keyl'] == 'valuel', and
$ GET['key2'] == 'value2'.

$ GET it? (haha...!)

Slide 56



$ POST

$_POST works just like $_GET, except that
parameters aren't passed in the URL.

Recommended way to pass form data — so that way
1t won't be easily visible (and changeable!) by the

uscer

Accessing the $_POST variable works just like
accessing the $_GET variable.

Slide 57



$ REQUEST

The $_ REQUEST variable is the union of $_GET,
$ SET, and $_COOKIE (to be discussed later).

It exists merely as a convenience, for situations in
which you don't really care where the input comes
from

Slide 58



PHP Cookies and Sessions

Slide 59



Cookies

Cookies are little data files that websites can store
on your computer

Used to store information about the user, or the
website state

EX., you could store a shopping cart on the user's
computer, or a username, or authentication information.

Cookies come 1n several different flavors: chocolate,
raisin, butterscotch ... oh wait, wrong kind of cookie.

Slide 60



Cookies

Commonly use form:

bool setcookie($name, $value, $expire)

Cookie information exchanges happens at the
beginning of the HTTP protocol

Happens before any real data 1s sent

As a result, the setcookie() method MUST be called

at the very beginning of your PHP file, before
anything else. No <html>, no whitespace, etc.

Slide 61



Cookies Example

2 // Cookies happen at the beginning of the HTTP

// See if we've stored a cookie yet.
if (isset($ COOKIE[ 'username'])) {
// The cookie is set. This means that there is a non-
// expired cookie, so the user was already here.
$username = $ COOKIE[ 'username'];
print "<hl>Welcome back!</h1l>";
10 print "<p>I see you've been here before, $username!</p>";
11 } else {
12 // The cookie is not set, so assume that the user
13 // hasn't been here yet.
14
15 // Check and see if the user just submitted.
16 if (isset($ POST['username'])) {
17 // The user just submitted. Store a cookie!
18 $username = $ POST[ 'username'];
19 setcookie('username',$username, time() + 120);
20 print "<hl>Nice to meet you!</hl>";
21 print "<p>It is nice to meet you, $username!</p>";
22
23 // The user didn't submit, and we don't have a cookie.
24 // Display a form.
25 print "<hl>Hello, stranger!</hl>";
26 print "<p>What is your name?</p>";
27 print "<form method=\"POST\" action=\"cookie.php\">";
28 print "Username: <input type=\"text\" name=\"username\"
29 print "<input type=\"submit\" value=\"Hello!\" />";
30 print "<form>";
31
32 }
33
34 7>

OooNOUTLA~ W




Sessions

Sessions are another way to store information about
your websites' users, kind of like cookies.

Unlike cookies however, sessions are stored on the
server, not on the client's computer.

This means that you can trust that sessions data you
store about a user hasn't been tampered or altered,
since you have control of it on the server.

Slide 63



Sessions

Data that you store 1n sessions can be accessed
across different pages in your website, making them
very useful

Very easy to use; PHP does most of the hard work

Slide 64



How Sessions Work

There's a magic, super-global array called
$ SESSION. It acts like $ GET, $_POST, and
$_REQUEST

To save information in a session, you set a string-
valued key of $_SESSION to the data you want:

$ SESSION['name'] = 'William B. Rogers';

After you set a session variable, 1t will be visible to
all other pages in your website.

Slide 65



Sessions

You can use sessions to implement a login-system

Shopping carts

Basically anything where you need to remember
something about the user

Slide 66



Session Example

1 <?php

2 // Sessions must also happen at the beginning of the HTTP
3 session start();

if (isset($ SESSION['username'])) {

// The cookie is set. This means that there is a non-

// expired cookie, so the user was already here.

$username = $ SESSION[ 'username'];

print "<hl>Welcome back!</h1>";

print "<p>I see you've been here before, $username!</p>";
} else {

// hasn't been here yet.

O o00oNO Ul &~

// Check and see if the user just submitted.
if (isset($ POST['username'])) {
// The user just submitted. Set a session var!
$username = $ POST['username'];
$ SESSION[ 'username'] = $username;
print "<hl>Nice to meet you!</hl>";
print "<p>It is nice to meet you, $username!</p>";

// The user didn't submit, and we don't have a cookie.
// Display a form.

print "<hl>Hello, stranger!</hl>";

print "<p>What is your name?</p>";

print “"<form method=\"POST\" action=\"session.php\">";
print "Username: <input type=\"text\" name=\"username\"
print "<input type=\"submit\" value=\"Hello!\" />";
print "<form>";




MySQL



About MySQL

MySQL is a free database commonly used on
websites to store information

PHP supports accessing MySQL databases
Very useful for generating websites

You can store information about users, preferences,
and many other kinds of information in MySQL
databases

Then, you can use this information in generating
webpage's HTML!

Slide 69



About MySQL

To use data stored in a MySQL database, first
connect to the database server (a program on the
server that handles database requests).

Connecting usually requires a username and
password

The MySQL server divides data into databases.
Within each database 1s one or more table.

The actual data records are stored in these tables.
Tables have columns and rows.

Slide 70



About MySQL

For example, here 1s a sample MySQL layout:

(Connection to server sql.mit.edu, logged in with
username 'sjlevine’):

— Database: sipbtest+cccphp

— Table: people

course gender favorite_programming_languz
Steve 6 Male PHP
Alice 2 Female Java
Bob 8 Male C++
Susan 3 Female PHP
Betty 6 Female Python

Slide 71



MySQL

There's a web-interface for administering databases
called phpMyAdmin (hey look, it's written in PHP!)

Useftul for setting up databases for your website

Alternatively, if youre a command-line lover, you
can use the mysql program on your server.

Slide 72



MySQL: Introducing

The current recommended way to access MySQL
databases 1s via the MySQL1 (MySQL improved)
extension for PHP

There 1s also a different extension called MySQL
(not to be confused with MySQL1), but i1t's mainly
for use with older versions of MySQL.

You should probably use MySQL..

Slide 73



Using MySQLi

General strategy for accessing data from an already-
existing database:

1. Connect to the MySQL database

2. Prepare your query (the question you're asking the database)
3. Actually execute your query

4. Process the results (the answer from the database)

(Repeat 2-4 as necessary)

5. Close your connection to the database

Slide 74



Using MySQLi

MySQLi1 comes with a bunch of nifty object-
oriented classes to accomplish all of these steps

There are multiple ways 1n PHP to connect to a
MySQL database; I'll show you one here (the

recommencd

The way I'll

ed way).

g

now you uses classes, and makes it

hard for MySQL 1njection attacks (will be described

later)!

Slide 75



Using MySQLi

3 Main Classes:

MySQ!
MySQ)]
MySQ!

1 — represents a connection
L1_STMT - represents a query

L1_Result — represents the result of a query (You

don't a

'ways need to use this)

Easiest way to see these 1n action is to actually take

a look at

some code. First I'll show it all to you, then

we'll go through it piece-by-piece

Slide 76



<?php

// For debugging, I'll turn on error output
ini set('display errors','On');
error_reporting(E ALL);

// I have my MySQL database username and password in
// a separate file, so import them.

require once('private/mysql _info.php');

// Make a MySQLi class, representing a connection to the
// MySQL database. I will open the database 'sjlevine+cccphp'
$conn = new mysqli('sql.mit.edu',MYSQL USER, MYSQL PASSWORD, 'sjlevine+cccphp');
// See if we connected successfully
if (mysqli connect errno()) {
print "<p>Couldn't connect to the MySQL server. Bummer!</p>";
exit();

}

// If we get here, then we connected just dandily to the MySQL server.
// Prepare a query for the MySQL database
$query = $conn->prepare("SELECT * FROM people WHERE gender=?");

// Bind the parameters (correspond to the ?'s) that we're looking for
$gender = 'Male';
$query->bind param('s',$gender);

// Actually execute the query
$query->execute();

// Now, process the results. First bind variables corresonding to columns in our results:
$query->bind result($name, $course, $gender, $fav prog lang);
print "<table><tr><td>Name</td><td>Course</td><td>Gender</td><td>Favorite Programming Langauge</td></tr>";

// Now, continually fetch new results that match our query, putting the answer in
// the bound variables. Keep going until no more results to "fetch."
while($query->fetch()) {

print "<tr><td>$name</td><td>$course</td><td>$gender</td><td>$fav_prog lang</td></tr>";
}
print "</table>";
$conn->close();
?>




MySQLi - Connect

Here we 1.) Connect

12 // I have my MySQL database username and password in

13 // a separate file, so import them.

14

15 require once('private/mysql info.php');

16

17 // Make a MySQL1i class, representing a connection to the

18 // MySQL database. I will open the database 'sjlevine+cccphp'

19 $conn = new mysqli('sgl.mit.edu’,MYSQL USER, MYSQL PASSWORD,
'sjlevine+cccphp');

20 // See if we connected successfully

21 if (mysqli connect errno()) {

22 print "<p>Couldn't connect to MySQL. Bummer!</p>";
23 exit();

24 }

Slide 78



MySQLi - Prepare Query

2.) Prepare the query

26 // If we get here, we connected just dandily to MySQL server.
27 // Prepare a query for the MySQL database

28 $query = $conn->prepare("SELECT * FROM people WHERE gender=?");
29

30 // Bind the parameters (correspond to the ?'s) that we're

Llooking for
31 $gender = 'Male'’;
32 $query->bind param('s',$gender);

bind_param: Fills 1in all of the '?" in the query string
with the values. The first argument 1s the type: s for
string, 1 for 1nt, etc.

Slide 79



@

MySQLiI - Execute

3.) Actually execute the query

The easiest part of all!

34 // Actually execute the query

35 $query->execute();

Slide 80



MySQLI - Process Results

4.) Process the results. Here I make a table

// Now, process the results. First bind variables corresonding to columns

in our results:

$query->bind result($name, $course, $gender, $fav prog lang);

print "<table><tr><td>Name</td><td>Course</td><td>Gender</td><td>Favorite
Programming Langauge</td></tr>";

// Now, continually fetch new results that match our query,

//putting the answer 1in
// the bound variables. Keep going until no more results to "fetch."
while($query->fetch()) {
print "<tr><td>$name</td><td>$course</td><td>$gender</td>
<td>$fav prog lang</td></tr>";

}
print "</table>";

Slide 81



@

MySQLi - Close

5.) Close the connection to MySQL

// (W)rap it up, yo

$conn->close():

Slide 82



MySQLi

And the output looks like:

SR R e

m {] http://sjlevine.scripts.mit.edu/cccphpi

MName Course Gender Favorite Programming Langauge
Steve 6 Male PHP
Bob 8 Male C++

Slide 83



PHP Security

Slide 84



Security

Now 1s a good time to talk about PHP security,
starting with MySQL security.

You may not think security 1s that important ('No
one will try to attack my small little website...")

You'd be surprised!!

Attacks are all over the place, so you should
program defensively. Especially on the web!

Slide 85



MySQL Injection Attacks T

Although MySQL is really cool, it can be prone to
'injection attacks' if you're not careful

There are other ways to do queries in MySQLi:

$result = $conn->query("SELECT * FROM people WHERE name=\"$name\"");

Although this may look shorter and sweeter than
what I presented before, 1t opens up the door for
injection attacks and probably shouldn't be used

Don't do it!

Slide 86



MySQL Injection Attacks

$result = $conn->query("SELECT * FROM people WHERE name=\"$name\"");

Assume that $name is retrieved directly from form
data (1.e., $name = $ POST['name']; )

This will work just fine if $name is something sane
like 'Bob’ or Jane'.

But, consider the case of the malicious user who,

instead of typing 'Bob', types the following (quotes
included):

", DROP people; SELECT * FROM foo WHERE name="

Slide 87



MySQL Injection Attacks ¥

Then, 1n this case, the MySQL query string will
read:

SELECT * FROM people WHERE name=""; DROP people;
SELECT * FROM foo WHERE name="";

Oh no, someone has just deleted our MySQL table!
COMPROMISED!!

Solution: Escape (i.e., encode quotes properly) any
text used in a MySQL query.

When you use bind_param in MySQL1i, this
happens automatically s



MySQL Injection Attacks

HI, THIS 1S

YOUR SON'S SCHOOL.

WERE HAVING SOME

(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN Fl ‘I.I.I’P.“r’

%4

DID YOU REALLY
NAME YOUR SON
Rebert'); DROP
TABLE Studerts; =~ 7

~ OH. YES. LITTLE
BOBRY TABRLES,
WE CALL HIM.

WELL WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
~~ YOUVE LEARNED
¢ TOSANMIZE YOUR
DATABASE INPUTS.

= (courtesty of www.xkcd.com)

Slide 89




XSS Attacks

Another kind of attack: XSS
XSS stands for 'Cross-Site Scripting'

On many websites, data entered by one user 1s
stored 1n a database, and then later displayed to
another user (ex. Forums, blogs, wiki's, etc.)

This 1s usually okay, for regular data.

But what if an evil user attempts to enter malicious
HTML or JavaScript into the database (into a forum
post)?

Slide 90



XSS Attacks

Remember the table of people from before?

course gender favorite_programming_languz:
Steve 6 Male PHP
Alice 2 Female Java
Bob 8 Male C++
Susan 3 Female PHP
Betty 6 Female Python

Let's now add a hacker who stores something
malicious in the MySQL database:

name course gender favorite_programming_language

Steve 6 Male PHP

Alice 2 Female Java

Bob 8 Male C++

Susan 3 Female PHP

Betty 6 Female Python

Jack 19 Male </td></tr></table><script>alert(“XSS!");</SCRIPT>

Slide 91



XSS Attacks

It PHP outputs this data as 1s, it will be interpreted
by the web-browser as HTML (just like anything
else outputted from PHP)

The hacker's entry will close oftf the HTML table we
made, and start executing arbitrary JavaScript code

This 1s very bad!!

Slide 92



XSS Attacks

In this example, the code doesn't do much — just
shows a messagebox.

However, a hacker could potentially read and send-

off your cookies (perhaps via
HTTPRequests/AJAX)

PHP Sessions are implemented by storing a session-
ID cookie on the computer. If this 1s stolen,
someone else can impersonate you on those
websites!

Called 'Session hijacking!' Slide 93



Ways to Prevent XSS

XSS can be, 1n general, hard to prevent in all
circumstances

Hackers are clever!

One way to make things a lot safer: use the PHP
function htmlspecialchars()

Takes as input a string, and encodes 1t in a way such the

content remains the same, but it will not be interpreted as
HTML

Slide 94



Ways to Prevent XSS

For example,

htmlspecialchars('<script>alert("XSS!");</script>",
ENT QUOTES) will output:

&lt;script&gt;alert(&quot; XSS! &quot;); &lt;/script&gt;

Note that this 1s ' HTML-1tied'; the browser will
interpret this as text, not as HTML

Will prevent some types of XSS attacks

Slide 95



Security

Importance of validation of any user input
register_global_variables

Don't reveal source code to users (or show internal
error messages)!

Just asking for a hacker to come and exploit a
vulnerability

Slide 96



Security: Protect You rself! 1

You may think that security 1s just about your users.
It's very important to protect yourself, too!

Consider this: You're the CEO of a multi-billion
dollar corporation, and you have millions of credit-
card numbers for your users stored in your
databases.

And then some hacker comes along, gets into your
databases, and steals all of the credit card numbers.

You'll be in trouble!!

Slide 97



Security: Protect You

There 1s however a way to make this easier: encrypt
all sensitive data stored in your databases

PHP has several encryption extensions, including
one called mcrypt that works well

Another 1dea: 1nstead of storing user's passwords 1n
your database, store mdS hash values instead. That
way, passwords cannot easily be stolen

For example, Unix-like systems (like Linux) do this

Slide 98



Security: Protect Yourself!

Another way to protect yourself: Don't let your users
see your PHP code

This usually 1sn't an 1ssue, since a default PHP
installation won't let this happen

However, if you turn on error display in PHP (using
ini_set or the php.ini1 file), and if something goes
wrong on your website, some information about
your PHP code will be shown to your users

So, for production services, turn off error output.
Log to a server file instead. Slide 99



Security: Protect Yourself! L

One last way to protect yourself: Turn
register_globals off

It 1s the default now in new versions of PHP,
because 1t was a security risk

register_globals used to be an alternate mechanism
for $_GET and $_POST that was more dangerous

Slide 100



Security Summary

Don't trust form data! Always check verity it's sane

If you don't use bind_param, always escape your
MySQL commands to prevent injection attacks

Use PHP functions like htmlspecialchars() to help
prevent XSS attacks

White-listing 1s better than black-listing
Protect yourselt! Encrypt sensitive information

Overall Moral: Trust no user-data. Always be
cautious Slide 101




Intro to AJAX

Slide 102



AJAX - What it is

AJAX stands for 'Asynchronous JavaScript and
XML

AJAX allows you to update a webpage without
triggering an entire page refresh

Used by a lot of web 2.0 websites, such as Gmail,
Google Earth, etc.

Typically faster than having the whole page refresh,
and also makes everything look fancier and shinier

Slide 103



AJAX - How i1t works

How 1t works:

1. The web surfer clicks something, or does some
trigger on a webpage

2. JavaScript code on the webpage sends some
message to the server

3. The server responds, and sends back XML or

H

'TML data
4. T

he JavaScript code updates the webpage 1n the

browser (without refreshing)

Slide 104



AJAX - on JavaScript

I won't go into much depth on JavaScript here (not
the main subject of this course!)

JavaScript can be a headache: subtle variations from
browser to browser

I'll be using a free, open source JavaScript library
called JQuery

Takes out the pain of using JavaScript for AJAX

Works the same across major browsers!

Slide 105



AJAX - Example

I'll now take you through a simple AJAX example

A website that downloads random content from the
server, and displays 1t without a page refresh

Two parts:

1.) The 'main' page that the user sees, has JavaScript.
Doesn't need any special PHP — all HTML +
JavaScript

2.) The PHP Tresponse' page, that generates the
AJAX response randomly

Slide 106



AJAX Response Page

<?php
// This script returns some random content to the web page that will be
$quotes = array(

1
2
3
4
5
6
7
38
9

)
$random index = rand(0, count($quotes) - 1);
print $quotes[$random index];

?>

Slide 107




AJAX Response Page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
<html xmlns= lang >
<head>
<title>AJAX Example</title>
<link rel= href= type= />
<script src=

<script type=

$(document) . ready (

function(){
$("#download button").click(function () {
$('#from server').load('example ajax server.php');
1)
1)

</script>

</head>

<body>

<h1>AJAX Example using PHP</h2>

<div id="from server" >This is where stuff from the server will
appear.</div>
19 <p id="download button">Click here to download something from
server</p>
20 </body>
21 </html>

1
2
3
4
5
6
7
38
9




Other Cool Stuff:
PHP Extensions

Slide 109



Other Cool PHP Stuff

PHP can send emails, using the email() function

The cURL extension lets you download other
webpages, or talk to other websites

Nifty for getting price quotes from other websites, or
getting directions from GoogleMaps in your PHP

The GD extension allows PHP to generate images.
Usetul for creating CAPTCHA systems

The mcrypt extension useful for encryption

Slide 110



Tips and Tricks

Slide 111



Common Mistakes:

If, when you run code, you just see a blank page,
you made a syntax mistake in your code

Forgetting a semicolon on the end of lines
() {} mismatches

To see these (and other errors) mstead of an
annoying blank page, enable debugging and warning
messages:

1 error _reporting(

22ini set('

Slide 112



Other Resources

php.net — PHP's official website. Extensive, useful
documentation

Wicked Cool PHP, by William Steinmetz and Brian
Ward. Very useful (and wicked cool!) book

Ask me! If you have any questions, feel free to
shoot me an email, or just come ask me now.

Good luck 1n you noble PHP adventures!

Slide 113



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

