Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

JavaScript

Article « 09/30/201929 minutes to read

Create Advanced Web Applications With
Object-Oriented Techniques

Ray Djajadinata

Recently | interviewed a software developer with five years experience in developing
Web applications. She'd been doing JavaScript for four and a half years, she rated her
JavaScript skill as very good, and—as | found out soon after—she actually knew very
little about JavaScript. | didn't really blame her for that, though. JavaScript is funny that
way. It's the language a lot of people (including myself, until recently!) assume they're
good at, just because they know C/C++/C# or they have some prior programming

experience.

In a way, that assumption is not entirely groundless. It is easy to do simple things with
JavaScript. The barrier to entry is very low; the language is forgiving and doesn't require
you to know a lot of things before you can start coding in it. Even a non-programmer
can probably pick it up and write some useful scripts for a homepage in a matter of
hours.

Indeed, until recently, I'd always been able to get by with whatever little JavaScript |
knew, armed only with the MSDN® DHTML reference and my C++/C# experience. It
was only when | started working on real-world AJAX applications that | realized how
inadequate my JavaScript actually was. The complexity and interactivity of this new
generation of Web applications requires a totally different approach to writing
JavaScript code. These are serious JavaScript applications! The way we've been writing

our throwaway scripts simply doesn’t cut it anymore.

Object-oriented programming (OOP) is one popular approach that's used in many
JavaScript libraries to make a codebase more manageable and maintainable. JavaScript
supports OOP, but it does so in a very different manner from the way popular
Microsoft® .NET Framework compliant languages like C++, C#, or Visual Basic® do it,

so developers who have been working extensively with those languages may find doing

1 of 31 2023-02-18, 1:22 p.m.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/%5Carchive%5Cmsdn-magazine%5Cauthors%5CRay_Djajadinata
https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/%5Carchive%5Cmsdn-magazine%5Cauthors%5CRay_Djajadinata

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

OOP in JavaScript strange and counter-intuitive at first. | wrote this article to discuss in
depth how the JavaScript language really supports object-oriented programming and
how you can use this support to do object-oriented development effectively in
JavaScript. Let's start by talking about (what else?) objects.

JavaScript Objects Are Dictionaries

In C++ or C#, when we're talking about objects, we're referring to instances of classes or
structs. Objects have different properties and methods, depending on which templates
(that is, classes) they are instantiated from. That's not the case with JavaScript objects. In
JavaScript, objects are just collections of name/value pairs—think of a JavaScript object
as a dictionary with string keys. We can get and set the properties of an object using

either the familiar "." (dot) operator, or the "[]" operator, which is typically used when
dealing with a dictionary. The following snippet

var userObject = new Object();
userObject.lastLoginTime = new Date();

alert(userObject.lastLoginTime);

does exactly the same thing as this:

var userObject = {}; // equivalent to new Object()
userObject["lastLoginTime"] = new Date();

alert(userObject["lastLoginTime"]);

We can also define the lastLoginTime property directly within userObject’s definition like
this:

2 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

var userObject = { "lastLoginTime": new Date() };

alert(userObject.lastLoginTime);

Note how similar it is to the C# 3.0 object initializers. Also, those of you familiar with
Python will recognize that the way we instantiate userObject in the second and third
snippets is exactly how we'd specify a dictionary in Python. The only difference is that a
JavaScript object/dictionary only accepts string keys, rather than hashable objects like a
Python dictionary would.

These examples also show how much more malleable JavaScript objects are than C++
or C# objects. Property lastLoginTime doesn’t have to be declared beforehand—if
userObject doesn't have a property by that name, it will simply be added to userObject.
This isn't surprising if you remember that a JavaScript object is a dictionary—after all, we

add new keys (and their respective values) to dictionaries all the time.

So, there we have object properties. How about object methods? Again, JavaScript is
different from C++/C#. To understand object methods, | first need to take a closer look

at JavaScript functions.

JavaScript Functions Are First Class

In many programming languages, functions and objects are usually considered two
different things. In JavaScript, this distinction is blurred—a JavaScript function is really
an object with executable code associated with it. Consider an ordinary function like this:

function func(x) {
alert(x);

}

func("blah");

This is how we usually define a function in JavaScript. But you can also define the same
function as follows, where you create an anonymous function object, and assign it to

variable func

3of31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso...

var func = function(x) {
alert(x);
}s

func("blah2");

https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

or even like this, using the Function constructor:

var func = new Function("x", "alert(x);");

func("blah3™);

This shows that a function is really just an object that supports a function call operation.

That last way of defining a function using the Function constructor is not commonly

used, but it opens up interesting possibilities because, as you may notice, the body of

the function is just a String parameter to the Function constructor. That means you can

construct arbitrary functions at run time.

To demonstrate further that a function is an object, you can set or add properties to a

function, just like you would to any other JavaScript objects:

function sayHi(x) {

alert("Hi, " + x + "1");

sayHi.text = "Hello World!";

sayHi["text2"] = "Hello World...

again.";

alert(sayHi["text"]); // displays "Hello World!"

alert(sayHi.text2); // displays "Hello World...

4 of 31

again."

2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

As objects, functions can also be assigned to variables, passed as arguments to other
functions, returned as the values of other functions, stored as properties of objects or
elements of arrays, and so on. Figure 1 provides an example of this.

Figure 1 Functions Are First-Class in JavaScript

// assign an anonymous function to a variable
var greet = function(x) {

alert("Hello, " + x);
}s

greet("MSDN readers");

// passing a function as an argument to another
function square(x) {

return x * x;

function operateOn(num, func) {

return func(num);

// displays 256

alert(operateOn(16, square));

// functions as return values

function makeIncrementer() {

return function(x) { return x + 1; };

50f31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

var inc = makeIncrementer();
// displays 8

alert(inc(7));

// functions stored as array elements

var arr = [];

arr[@] = function(x) { return x * x; };
arr[1] = arr[0](2);

arr[2] = arr[@](arr[1]);

arr[3] = arr[@](arr[2]);

// displays 256

alert(arr[3]);

// functions as object properties
var obj = { "toString" : function() { return "This is an object."; } };
// calls obj.toString()

alert(obj);

With that in mind, adding methods to an object is as easy as choosing a name and
assigning a function to that name. So | define three methods in the object by assigning
anonymous functions to the respective method names:

var myDog = {
"name" : "Spot",
"bark™ : function() { alert("Woof!"); },

"displayFullName" : function() {

6 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

alert(this.name + " The Alpha Dog");
¥
"chaseMrPostman" : function() {

// implementation beyond the scope of this article

¥
myDog.displayFullName();

myDog.bark(); // Woof!

The use of the "this" keyword inside the function displayFullName should be familiar to
the C++/C# developers among us—it refers to the object through which the method is
called (developers who use Visual Basic should find it familiar, too—it's called "Me" in
Visual Basic). So in the example above, the value of "this" in the displayFullName is the
myDog object. The value of "this" is not static, though. Called through a different object,
the value of "this" will also change to point to that object as Figure 2 demonstrates.

Figure 2 “this” Changes as the Object Changes

function displayQuote() {
// the value of "this" will change; depends on
// which object it is called through

alert(this.memorableQuote);

var williamShakespeare = {

"memorableQuote": "It is a wise father that knows his own child.",
"sayIt" : displayQuote

}s

7 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

var markTwain = {
"memorableQuote”: "Golf is a good walk spoiled.",
"sayIt" : displayQuote

}s

var oscarWilde = {
"memorableQuote": "True friends stab you in the front."
// we can call the function displayQuote
// as a method of oscarWilde without assigning it
// as oscarWilde’s method.

//"sayIt" : displayQuote

}s

williamShakespeare.sayIt(); // true, true

markTwain.sayIt(); // he didn’t know where to play golf

// watch this, each function has a method call()

// that allows the function to be called as a

// method of the object passed to call() as an

// argument.

// this line below is equivalent to assigning

// displayQuote to sayIt, and calling oscarWilde.sayIt().

displayQuote.call(oscarWilde); // ouch!

The last line in Figure 2 shows an alternative way of calling a function as a method of an

8 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

object. Remember, a function in JavaScript is an object. Every function object has a
method named call, which calls the function as a method of the first argument. That is,
whichever object we pass into call as its first argument will become the value of "this" in
the function invocation. This will be a useful technique for calling the base class

constructor, as we'll see later.

One thing to remember is never to call functions that contain "this" without an owning
object. If you do, you will be trampling over the global namespace, because in that call,
"this" will refer to the Global object, and that can really wreak havoc in your application.
For example, below is a script that changes the behavior of JavaScript's global function

isNaN. Definitely not recommended!

alert("NaN is NaN: " + isNaN(NaN));

function x() {
this.isNaN = function() {
return "not anymore!";
¥
}

// alert!!! trampling the Global object!!!

x();

alert("NaN is NaN: " + isNaN(NaN));

So we've seen ways to create an object, complete with its properties and methods. But if
you notice all the snippets above, the properties and methods are hardcoded within the
object definition itself. What if you need more control over the object creation? For
example, you may need to calculate the values of the object’s properties based on some
parameters. Or you may need to initialize the object’s properties to the values that you'll
only have at run time. Or you may need to create more than one instance of the object,
which is a very common requirement.

9 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

In C#, we use classes to instantiate object instances. But JavaScript is different since it
doesn’t have classes. Instead, as you'll see in the next section, you take advantage of the
fact that functions act as constructors when used together with the "new" operator.

Constructor Functions but No Classes

The strangest thing about JavaScript OOP is that, as noted, JavaScript doesn't have
classes like C# or C++ does. In C#, when you do something like this:

Dog spot = new Dog();

you get back an object, which is an instance of the class Dog. But in JavaScript there’'s no
class to begin with. This closest you can get to a class is by defining a constructor

function like this:

function DogConstructor(name) {
this.name = name;
this.respondTo = function(name) {
if(this.name == name) {

alert("Woof");

}s

var spot = new DogConstructor("Spot");
spot.respondTo("Rover"); // nope

spot.respondTo("Spot"); // yeah!

10 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

OK, so what's happening here? Ignore the DogConstructor function definition for a
moment and examine this line:

var spot = new DogConstructor("Spot");

What the "new" operator does is simple. First, it creates a new empty object. Then, the
function call that immediately follows is executed, with the new empty object set as the
value of "this" within that function. In other words, the line above with the "new"

operator can be thought of as similar to the two lines below:

// create an empty object
var spot = {};
// call the function as a method of the empty object

DogConstructor.call(spot, "Spot");

As you can see in the body of DogConstructor, invoking this function initializes the
object to which the keyword "this" refers during that invocation. This way, you have a
way of creating a template for objects! Whenever you need to create a similar object,
you call "new" together with the constructor function, and you get back a fully initialized
object as a result. Sounds very similar to a class, doesn't it? In fact, usually in JavaScript
the name of the constructor function is the name of the class you're simulating, so in the
example above you can just name the constructor function Dog:

// Think of this as class Dog
function Dog(name) {
// instance variable
this.name = name;
// instance method? Hmmm..

this.respondTo = function(name) {

11 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

if(this.name == name) {

alert("Woof");

}s

var spot = new Dog("Spot");

In the Dog definition above, | defined an instance variable called name. Every object that
is created using Dog as its constructor function will have its own copy of the instance
variable name (which, as noted earlier, is just an entry into the object’s dictionary). This
is expected; after all, each object does need its own copies of instance variables to carry
its state. But if you look at the next line, every instance of Dog also has its own copy of
the respondTo method, which is a waste; you only need one instance of respondTo to be
shared among Dog instances! You can work around the problem by taking the definition

of respondTo outside Dog, like this:

function respondTo() {

// respondTo definition

function Dog(name) {
this.name = name;
// attached this function as a method of the object

this.respondTo = respondTo;

This way, all instances of Dog (that is, all instances created with the constructor function

12 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

Dog) can share just one instance of the method respondTo. But as the number of
methods grow, this becomes harder and harder to maintain. You end up with a lot of
global functions in your codebase, and things only get worse as you have more and
more "classes," especially if their methods have similar names. There's a better way to
achieve this using the prototype objects, which are the topic of the next section.

Prototypes

The prototype object is a central concept in object-oriented programming with
JavaScript. The name comes from the idea that in JavaScript, an object is created as a
copy of an existing example (that is, a prototype) object. Any properties and methods of
this prototype object will appear as properties and methods of the objects created from
that prototype’s constructor. You can say that these objects inherit their properties and
methods from their prototype. When you create a new Dog object like this

var buddy = new Dog("Buddy");

the object referenced by buddy inherits properties and methods from its prototype,
although it's probably not obvious from just that one line where the prototype comes
from. The prototype of the object buddy comes from a property of the constructor
function (which, in this case, is the function Dog).

In JavaScript, every function has a property named "prototype" that refers to a
prototype object. This prototype object in turn has a property named "constructor,"
which refers back to the function itself. It's sort of a circular reference; Figure 3 illustrates

this cyclic relationship better.

functlon Dog og.prototype

Figure 3** Every Function’s Prototype Has a Constructor Property **

Now, when a function (in the example above, Dog) is used to create an object with the
"new" operator, the resulting object will inherit the properties of Dog.prototype. In
Figure 3, you can see that the Dog.prototype object has a constructor property that

13 of 31 2023-02-18, 1:22 p.m.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/images/cc163419.fig03(en-us).gif
https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/images/cc163419.fig03(en-us).gif

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

points back to the Dog function. Consequently, every Dog object (that inherits from
Dog.prototype) will also appear to have a constructor property that points back to the
Dog function. The code in Figure 4 confirms this. This relationship between constructor
function, prototype object, and the object created with them is depicted in Figure 5.

Figure 4 Objects Appear to Have Their Prototype’s Properties

var spot = new Dog("Spot");

// Dog.prototype is the prototype of spot

alert(Dog.prototype.isPrototypeOf(spot));

// spot inherits the constructor property
// from Dog.prototype
alert(spot.constructor == Dog.prototype.constructor);

alert(spot.constructor == Dog);

// But constructor property doesn’t belong
// to spot. The line below displays "false"

alert(spot.hasOwnProperty("constructor"));

// The constructor property belongs to Dog.prototype

// The line below displays "true"

alert(Dog.prototype.hasOwnProperty("constructor"));

14 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

v
function Dogl) og.prototype

spot = new Dog{}

rover = new Dogf) buddy = new Dog()

Figure 5** Instances Inherit from Their Prototype **

Some of you may have noticed the calls to hasOwnProperty and isPrototypeOf method
in Figure 4. Where do these methods come from? They don’t come from Dog.prototype.
In fact, there are other methods like toString, toLocaleString, and valueOf that we can
call on Dog.prototype and instances of Dog, but which don’t come from Dog.prototype
at all. It turns out that just like the .NET Framework has System.Object, which serves as
the ultimate base class for all classes, JavaScript has Object.prototype, which is the
ultimate base prototype for all prototypes. (The prototype of Object.prototype is null.)

In this example, remember that Dog.prototype is an object. It is created with a call to the

Object constructor function, although it is not visible:

Dog.prototype = new Object();

So just like instances of Dog inherit from Dog.prototype, Dog.prototype inherits from
Object.prototype. This makes all instances of Dog inherit Object.prototype’s methods
and properties as well.

Every JavaScript object inherits a chain of prototypes, all of which terminate with
Object.prototype. Note that this inheritance you've seen so far is inheritance between
live objects. It is different from your usual notion of inheritance, which happens between
classes when they are declared. Consequently, JavaScript inheritance is much more
dynamic. It is done using a simple algorithm, as follows: when you try to access a
property/method of an object, JavaScript checks if that property/method is defined in
that object. If not, then the object’s prototype will be checked. If not, then that object’s

15 of 31 2023-02-18, 1:22 p.m.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/images/cc163419.fig05(en-us).gif
https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/images/cc163419.fig05(en-us).gif

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

prototype’s prototype will be checked, and so on, all the way to Object.prototype.

Figure 6 illustrates this resolution process.

Object doesn't
support this meth
Call No

functio nl.alur Jectprototyp toString() on
prototype constructor this o h"’ >

Dog.prototypel= Call TN‘Z'
new Cbject() 1oString(} on
this ohject

function Doqgll

‘IF'I

prototype
I
n Call TNU
rover = new Dogll
105 "IIII.JQ on
this « h]o 1

rovertoString(}

Figure 6** Resolving toString() Method in the Prototype Chain **(Click the image for a

larger view)

The way JavaScript resolves properties access and method calls dynamically has some
consequences:Changes made to a prototype object are immediately visible to the
objects that inherit from it, even after these objects are created.If you define a
property/method X in an object, a property/method of the same name will be hidden in
that object’s prototype. For instance, you can override Object.prototype’s toString
method by defining a toString method in Dog.prototype.Changes only go in one
direction, from prototype to its derived objects, but not vice versa.

Figure 7 illustrates these consequences. Figure 7 also shows how to solve the problem
of unnecessary method instances as encountered earlier. Instead of having a separate
instance of a function object for every object, you can make the objects share the
method by putting it inside the prototype. In this example, the getBreed method is
shared by rover and spot—until you override the toString method in spot, anyway. After
that, spot has its own version of the getBreed method, but the rover object and
subsequent objects created with new GreatDane will still share that one instance of the
getBreed method defined in the GreatDane.prototype object.

Figure 7 Inheriting from a Prototype

16 of 31 2023-02-18, 1:22 p.m.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/images/cc163419.fig06.gif
https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/images/cc163419.fig06.gif

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

function GreatDane() { }

var rover = new GreatDane();

var spot = new GreatDane();

GreatDane.prototype.getBreed = function() {

return "Great Dane";

}s

// Works, even though at this point
// rover and spot are already created.

alert(rover.getBreed());

// this hides getBreed() in GreatDane.prototype
spot.getBreed = function() {

return "Little Great Dane";
¥

alert(spot.getBreed());

// but of course, the change to getBreed

// doesn’t propagate back to GreatDane.prototype
// and other objects inheriting from it,

// it only happens in the spot object

alert(rover.getBreed());

17 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

Static Properties and Methods

Sometimes you need properties or methods that are tied to classes instead of
instances—that is, static properties and methods. JavaScript makes this easy, since
functions are objects whose properties and methods can be set as desired. Since a
constructor function represents a class in JavaScript, you can add static methods and
properties to a class simply by setting them in the constructor function like this:

function DateTime() { }

// set static method now()
DateTime.now = function() {

return new Date();

}s

alert(DateTime.now());

The syntax for calling the static methods in JavaScript is virtually identical to how you'd
do it in C#. This shouldn’t come as a surprise since the name of the constructor function
is effectively the name of the class. So you have classes, and you have public
properties/methods, and static properties/methods. What else do you need? Private
members, of course. But JavaScript doesn’t have native support for private members
(nor for protected, for that matter). All properties and methods of an object are
accessible to anyone. There is a way to have private members in your class, but to do so
you first need to understand closures.

Closures

| didn’t learn JavaScript of my own volition. | had to pick it up quickly because | realized
that | was ill-prepared to work on a real-world AJAX application without it. At first, | felt
like | had gone down a few levels in the programmer hierarchy. (JavaScript! What would
my C++ friends say?) But once | got over my initial resistance, | realized that JavaScript

18 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

was actually a powerful, expressive, and compact language. It even boasts features that

other, more popular languages are only beginning to support.

One of JavaScript's more advanced features is its support for closures, which C# 2.0
supports through its anonymous methods. A closure is a runtime phenomenon that
comes about when an inner function (or in C#, an inner anonymous method) is bound
to the local variables of its outer function. Obviously, it doesn't make much sense unless
this inner function is somehow made accessible outside the outer function. An example

will make this clearer.

Let's say you need to filter a sequence of numbers based on a simple criterion that only
numbers bigger than 100 can pass, while the rest are filtered out. You can write a

function like the one in Figure 8.

Figure 8 Filtering Elements Based on a Predicate

function filter(pred, arr) {

var len = arr.length;

var filtered = []; // shorter version of new Array();

// iterate through every element in the array...

for(var i = 0; i &1lt; len; i++) {
var val = arr[i];
// if the element satisfies the predicate let it through
if(pred(val)) {

filtered.push(val);

return filtered;

19 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

var someRandomNumbers = [12, 32, 1, 3, 2, 2, 234, 236, 632,7, 8];
var numbersGreaterThanlee = filter(
function(x) { return (x > 100) ? true : false; },

someRandomNumbers) ;

// displays 234, 236, 632

alert(numbersGreaterThanle9);

But now you want to create a different filtering criterion, let's say this time only numbers
bigger than 300. You can do something like this:

var greaterThan300 = filter(
function(x) { return (x > 300) ? true : false; },

someRandomNumbers) ;

And then maybe you need to filter numbers that are bigger than 50, 25, 10, 600, and so
on, but then, being the smart person you are, you realize that they're all the same
predicate, "greater than." Only the number is different. So you can factor the number
out with a function like this

function makeGreaterThanPredicate(lowerBound) {
return function(numberToCheck) {
return (numberToCheck > lowerBound) ? true : false;

}s

which lets you do something like this:

20 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

var greaterThanl®@ = makeGreaterThanPredicate(10);
var greaterThanl00 = makeGreaterThanPredicate(100);
alert(filter(greaterThanl10, someRandomNumbers));

alert(filter(greaterThanl100, someRandomNumbers));

Watch the inner anonymous function returned by the function
makeGreaterThanPredicate. That anonymous inner function uses lowerBound, which is
an argument passed to makeGreaterThanPredicate. By the usual rules of scoping,
lowerBound goes out of scope when makeGreaterThanPredicate exits! But in this case,
that inner anonymous function still carries lowerBound with it, even long after make-
GreaterThanPredicate exits. This is what we call closure—because the inner function
closes over the environment (that is, the arguments and local variables of the outer
function) in which it is defined.

Closures may not seem like a big deal at first. But used properly, they open up
interesting new possibilities in the way you can translate your ideas into code. One of
the most interesting uses of closures in JavaScript is to simulate private variables of a
class.

Simulating Private Properties

OK, so let's see how closures can help in simulating private members. A local variable in
a function is normally not accessible from outside the function. After the function exits,
for all practical purposes that local variable is gone forever. However, when that local
variable is captured by an inner function’s closure, it lives on. This fact is the key to
simulating JavaScript private properties. Consider the following Person class:

function Person(name, age) {

this.getName

function() { return name; };
this.setName = function(newName) { name = newName; };

this.getAge = function() { return age; };

21 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

this.setAge = function(newAge) { age = newAge; };

The arguments name and age are local to the constructor function Person. The moment
Person returns, name and age are supposed to be gone forever. However, they are
captured by the four inner functions that are assigned as methods of a Person instance,
in effect making name and age live on, but only accessible strictly through these four
methods. So you can do this:

var ray = new Person("Ray", 31);
alert(ray.getName());

alert(ray.getAge());

ray.setName("Younger Ray");

// Instant rejuvenation!

ray.setAge(22);

alert(ray.getName() + " is now " + ray.getAge() +

" years old.");

Private members that don’t get initialized in the constructor can be local variables of the
constructor function, like this:

function Person(name, age) {

var occupation;

this.getOccupation = function() { return occupation; };

this.setOccupation = function(newOcc) { occupation =

newOcc; };

22 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

// accessors for name and age

Note that these private members are slightly different from what we'd expect from
private members in C#. In C#, the public methods of a class can access its private
members. But in JavaScript, the private members are accessible only through methods
that have these private members within their closures (these methods are usually called
privileged methods, since they are different from ordinary public methods). So within
Person’s public methods, you still have to access a private member through its
privileged accessors methods:

Person.prototype.somePublicMethod = function() {
// doesn’t work!
// alert(this.name);
// this one below works

alert(this.getName());

}s

Douglas Crockford is widely known as the first person to discover (or perhaps publish)
the technique of using closures to simulate private members. His Web site,
javascript.crockford.com , contains a wealth of information on JavaScript—any
developer interested in JavaScript should check it out.

Inheriting from Classes

OK, you've seen how constructor functions and prototype objects allow you to simulate
classes in JavaScript. You've seen that the prototype chain ensures that all objects have
the common methods of Object.prototype. You've seen how you can simulate private
members of a class using closures. But something is missing here. You haven't seen how
you can derive from your class; that's an everyday activity in C#. Unfortunately,
inheriting from a class in JavaScript is not simply a matter of typing a colon like in C#; it
takes more than that. On the other hand, JavaScript is so flexible that there are a lot of

23 of 31 2023-02-18, 1:22 p.m.

https://javascript.crockford.com/
https://javascript.crockford.com/
https://javascript.crockford.com/

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

ways of inheriting from a class.

Let's say, for example, you have a base class Pet, with one derived class Dog, as in Figure
9. How do you go about this in JavaScript? The Pet class is easy. You've seen how you
can do this:

»

| Pet
Class

=l Fields
47 name
= Properties
o Name
-l Methods
v Pet
W ToString

»

| Dog
Class
-+ Pet

=l Fields

47 breed
= Properties

“r Breed
=/ Methods

w Dog

w ToString

Figure 9** Classes **

// class Pet

function Pet(name) {

this.getName = function() { return name; };

this.setName = function(newName) { name = newName; };

Pet.prototype.toString = function() {

return "This pet’s name is: + this.getName();

24 of 31 2023-02-18, 1:22 p.m.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/images/cc163419.fig09(en-us).gif
https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/images/cc163419.fig09(en-us).gif

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

}s

// end of class Pet

var parrotty = new Pet("Parrotty the Parrot");

alert(parrotty);

Now what if you want to create a class Dog, which derives from Pet? As you can see in
Figure 9, Dog has an extra property, breed, and it overrides Pet’s toString method (note
that convention for JavaScript is to use camel casing for methods and properties names,
instead of Pascal casing as is recommended with C#). Figure 10 shows how it is done.

Figure 10 Deriving from the Pet Class

// class Dog : Pet
// public Dog(string name, string breed)
function Dog(name, breed) {
// think Dog : base(name)
Pet.call(this, name);
this.getBreed = function() { return breed; };
// Breed doesn’t change, obviously! It’s read only.

// this.setBreed = function(newBreed) { name = newName; };

// this makes Dog.prototype inherits
// from Pet.prototype

Dog.prototype = new Pet();

25 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

// remember that Pet.prototype.constructor
// points to Pet. We want our Dog instances’
// constructor to point to Dog.

Dog.prototype.constructor = Dog;

// Now we override Pet.prototype.toString
Dog.prototype.toString = function() {

return "This dog’s name is: + this.getName() +

, and its breed is: + this.getBreed();

}s

// end of class Dog

var dog = new Dog("Buddy", "Great Dane");
// test the new toString()

alert(dog);

// Testing instanceof (similar to the is operator)
// (dog is Dog)? yes

alert(dog instanceof Dog);

// (dog is Pet)? yes

alert(dog instanceof Pet);

// (dog is Object)? yes

alert(dog instanceof Object);

The prototype-replacement trick used sets the prototype chain properly, so instanceof
tests work as expected if you were using C#. Also, the privileged methods still work as

26 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

expected.

Simulating Namespaces

In C++ and C#, namespaces are used to minimize the probability of name collisions. In
the .NET Framework, namespaces help differentiate Microsoft.Build.Task.Message class
from System.Messaging.Message, for example. JavaScript doesn’t have any specific
language features to support namespaces, but it's easy to simulate a namespace using
objects. Let's say you want to create a JavaScript library. Instead of defining functions
and classes globally, you can wrap them in a namespace like this:

var MSDNMagNS = {};

MSDNMagNS.Pet = function(name) { // code here };

MSDNMagNS .Pet.prototype.toString = function() { // code };

var pet = new MSDNMagNS.Pet("Yammer");

One level of namespace may not be unique, so you can create nested namespaces:

27 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

var MSDNMagNS = {};

// nested namespace "Examples'

MSDNMagNS .Examples = {};

MSDNMagNS .Examples.Pet = function(name) { // code };

MSDNMagNS.Examples.Pet.prototype.toString = function() { // code };

var pet = new MSDNMagNS.Examples.Pet("Yammer");

As you can imagine, typing those long nested namespaces can get tiresome pretty fast.
Fortunately, it's easy for the users of your library to alias your namespace into
something shorter:

// MSDNMagNS.Examples and Pet definition...

// think "using Eg = MSDNMagNS.Examples;"
var Eg = MSDNMagNS.Examples;
var pet = new Eg.Pet("Yammer");

alert(pet);

If you take a look at the source code of the Microsoft AJAX Library, you'll see that the
library’s authors use a similar technique to implement namespaces (take a look at the
implementation of the static method Type.registerNamespace). See the sidebar "OOP
and ASP.NET AJAX" for more information.

Should You Code JavaScript This Way?

You've seen that JavaScript supports object-oriented programming just fine. Although it

28 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

was designed as a prototype-based language, it is flexible and powerful enough to
accommodate the class-based programming style that is typically found in other
popular languages. But the question is: should you code JavaScript this way? Should you
code in JavaScript the way you code in C# or C++, coming up with clever ways to
simulate features that aren’t there? Each programming language is different, and the
best practices for one language may not be the best practices for another.

In JavaScript, you've seen that objects inherit from objects (as opposed to classes
inheriting from classes). So it is possible that making a lot of classes using a static
inheritance hierarchy is not the JavaScript way. Maybe, as Douglas Crockford says in his
article "Prototypal Inheritance in JavaScript ", the JavaScript way of programming is to
make prototype objects, and use the simple object function below to make new objects,
which inherit from that original object:

function object(o) {
function F() {}
F.prototype = o;

return new F();

Then, since objects in JavaScript are malleable, you can easily augment the object after
its creation with new fields and new methods as necessary.

This is all good, but it is undeniable that the majority of developers worldwide are more
familiar with class-based programming. Class-based programming is here to stay, in
fact. According to the upcoming edition 4 of ECMA-262 specification (ECMA-262 is the
official specification for JavaScript), JavaScript 2.0 will have true classes. So JavaScript is
moving towards being a class-based language. However, it will probably take years for
JavaScript 2.0 to reach widespread use. In the meantime, it's important to know the
current JavaScript well enough to read and write JavaScript code in both prototype-
based style and class-based style.

Putting It into Perspective

29 of 31 2023-02-18, 1:22 p.m.

https://javascript.crockford.com/prototypal.html
https://javascript.crockford.com/prototypal.html
https://javascript.crockford.com/prototypal.html

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

With the proliferation of interactive, client-heavy AJAX applications, JavaScript is quickly
becoming one of the most useful tools in a .NET developer’s arsenal. However, its
prototypal nature may initially surprise developers who are more used to languages
such as C++, C#, or Visual Basic. | have found my JavaScript journey a rewarding
experience, although not entirely without frustration along the way. If this article can
help make your experience smoother, then I'm happy, for that's my goal.

OOP and ASP.NET AJAX

OOP as implemented in ASP.NET AJAX is a little different from the canonical
implementation discussed in this article. There are two main reasons for that: the
ASP.NET AJAX version offers more possibilities for reflection (which is necessary for
declarative syntaxes such as xml-script and for parameter validation), and ASP.NET AJAX
aims at translating to JavaScript some additional constructs that are familiar to
developers using .NET, such as properties, events, enumerations, and interfaces.

In its current widely available version, JavaScript lacks a few key concepts of OOP that
.NET developers are familiar with, and ASP.NET AJAX emulates most of those.

Classes can have property accessors based on a naming convention (example to follow),
as well as multicast events following a pattern that closely mirrors that provided by .NET.
Private variables are based on the convention that members starting with an underscore
are private. Truly private variables are rarely necessary, and this policy enables those
variables to be inspected from a debugger. Interfaces are also introduced to enable type
checking scenarios beyond the usual duck-typing (a type scheme based on the concept
that if something walks like a duck and quacks like a duck, it's a duck, or at least it can
be treated like one).

Classes and Reflection

In JavaScript, there is no way to know the name of a function. Even if this was possible, it
wouldn’t help us in most situations as a class constructor is typically built by assigning
an anonymous function to a namespaced variable. What really constitutes the type
name is the fully qualified name of this variable, which is equally inaccessible and of
which the constructor function itself knows nothing. To work around this limitation and
have rich reflection over JavaScript classes, ASP.NET AJAX requires the names of types to
be registered.

The reflection APIs in ASP.NET AJAX work over any type, whether it's built-in, a class, an
interface, a namespace, or even an enumeration, and they include .NET Framework-like

30 of 31 2023-02-18, 1:22 p.m.

Advanced Web Applications With Object-Oriented JavaScript | Microso... https://learn.microsoft.com/en-us/archive/msdn-magazine/2007/may/ad...

functions like isInstanceOfType and inheritsFrom to inspect the class hierarchy at run
time. ASP.NET AJAX also does some type checking in debug mode where it makes sense
to help developers catch bugs earlier.

Registering Class Hierarchies and Calling Base

To define a class in ASP.NET AJAX, you need to assign its constructor to a variable
(notice how the constructor calls base):

MyNamespace.MyClass = function() {
MyNamespace.MyClass.initializeBase(this);
this._myProperty = null;

}

Then, you need to define the class members itself in its prototype:

MyNamespace.MyClass.prototype = {
get_myProperty: function() { return this._myProperty;},
set_myProperty: function(value) { this._myProperty = value; },
doSomething: function() {
MyNamespace.MyClass.callBaseMethod(this, "doSomething");
/* do something more */

}
}

And finally you register the class:

MyNamespace.MyClass.registerClass(
"MyNamespace.MyClass ", MyNamespace.BaseClass);

There is no need here to manage the constructor and prototype hierarchies as this is
done for you by the registerClass function.

Bertrand Le Roy is a Software Design Engineer Il on the ASP.NET AJAX team.

Ray Djajadinata is having fun developing AJAX applications in Barclays Capital
Singapore. You can reach Ray at ray.djajadinata@gmail.com.

31 of 31 2023-02-18, 1:22 p.m.

mailto:ray.djajadinata@gmail.com
mailto:ray.djajadinata@gmail.com

